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Chapter 1

Gravitational Collapse

1.1 The Chandrasekhar Limit

A Star is a self-gravitating ball of hydrogen atoms supported by thermal
pressure P ~ nkT where n is the number density of atoms. In equilibrium,

E = Egrav + Ekin (11)
is a minimum. For a star of mass M and radius R
GM?
Egray ~ — = (1.2)
Fin ~ nR*(E) (1.3)

where (F) is average kinetic energy of atoms. Eventually, fusion at the
core must stop, after which the star cools and contracts. Consider the
possible final state of a star at I" = 0. The pressure P does not go to zero
as T — 0 because of degeneracy pressure. Since m. < m, the electrons
become degenerate first, at a number density of one electron in a cube of
side ~ Compton wavelength.

hi
n;'/% ~ —, (p) = average electron momentum (1.4)

‘ (pe)’

Can electron degeneracy pressure support a star from collapse
at T =07

Assume that electrons are non-relativistic. Then

2
(E) ~ %i . (1.5)




So, since n = ne,

212,.2/3
Fgn ~ 1Te (1.6)
Me
. 3 M
Since me K My, M = n.°me, S0 [Ne ~ 7 | and
mplR
(o)
Biin ~ — | — —. (1.7)
e \ My R?
constant for
xe
Thus
a_b independent of 1
E~ R R a, Bindependent of R. (1.8)
FE
R2N-L/3
Rmin ~ 5
Gmemp/3
Rmin

The collapse of the star is therefore prevented. It becomes a White Dwarf
or a cold, dead star supported by electron degeneracy pressure.
At equilibrium
M meG 2/3 8
Ne ~ 3 ( 72 (Mmf,) > . (1.9)

mplR
But the validity of non-relativistic approximation requires that (p.) < mec,
i.e.

min

1/3
%> - —h?rf < (1.10)

mgc>2 ‘

or me < ( (1.11)



For a White Dwarf this implies

CG €
W%z (Mm2)*"* <« —mhc (1.12)
1 [he\*?
M<— (=] . 1.13
or < 2 <G> (1.13)

For sufficiently large M the electrons would have to be relativistic, in
which case we must use

(E) = (pe) ¢ = henl/? (1.14)
=  FEun ~ nR*(E)~ hicR*n/3 (1.15)
MoO\/3 M3
~ heR® ~hel—) 1.16
¢ <mpR3> ¢ (mp> R ( )
So now,
a v
E~_247 1.17
TR (1.17)
Equilibrium is possible only for
1 (he\%?
= M~—1{—= . 1.18
y—a = m% <G> ( )

For smaller M, R must increase until electrons hecome non-relativistic,
in which case the star is supported by electron degeneracy pressure, as we
just saw. For larger M, R must continue to decrease, so electron degeneracy
pressure cannot support the star. There is therefore a critical mass Mo

1 [He\*? 1 /Y2
Mo~ — | — ~ — 1.1
¢ mf, <G> = Ko <G0> (1.19)

above which a star cannot end as a White Dwarf. This is the Chandrasekhar
limit. Detailed calculation gives Mc ~ 1.4Mg,.

1.2 Neutron Stars

The electron energies available in a White Dwarf are of the order of the Fermi
energy. Necessarily Ep S mec? since the electrons are otherwise relativistic
and cannot support the star. A White Dwarf is therefore stable against
inverse [-decay

e +pt —=ntre (1.20)



since the reaction needs energy of at least (Amy,)c? where Am,, is the
neutron-proton mass difference. Clearly Am > m. (8-decay would other-
wise be impossible) and in fact Am ~ 3m.. So we need energies of order of
3mec? for inverse B-decay. This is not available in White Dwarf stars but for
M > M¢ the star must continue to contract until Ep ~ (Amy,)c?. At this
point inverse -decay can occur. The reaction cannot come to equilibrium
with the reverse reaction

n+ve—e +pt (1.21)
because the neutrinos escape from the star, and (-decay,

n—e +piu (1.22)

cannot occur because all electron energy levels below E < (Am,)c? are

filled when E > (Am,)c?. Since inverse $-decay removes the electron de-
generacy pressure the star will undergo a catastrophic collapse to nuclear
matter density, at which point we must take neutron-degeneracy pressure
into account.

Can neutron-degeneracy pressure support the star against col-
lapse?

The ideal gas approximation would give same result as before but with
me — Mmyp. The critical mass M¢ is independent of m. and so is unaffected,
but the critical radius is now

Me 1 (B3\"? M
R~ — | 22 ~ 1.23
(m,,) © m2 <G0> c? (1.23)
which is the Schwarzschild radius, so the neglect of GR effects was not
justified. Also, at nuclear matter densities the ideal gas approximation is

not justified. A perfect fluid approximation is reasonable (since viscosity
can’t help). Assume that P(p) (p = density of fluid) satisfies

i) P >0 (local stability). (1.24)
ii) P <c® (causality). (1.25)

Then the known behaviour of P(p) at low nuclear densities gives
Mimax ~ 3Mpg. (1.26)

More massive stars must continue to collapse either to an unknown new
ultra-high density state of matter or to a black hole. The latter is more



likely. In any case, there must be some mass at which gravitational collapse
to a black hole is unavoidable because the density at the Schwarzschild
radius decreases as the total mass increases. In the limit of very large mass
the collapse is well-approximated by assuming the collapsing material to be
a pressure-free ball of fluid. We shall consider this case shortly.

10



Chapter 2

Schwarzschild Black Hole

2.1 Test particles: geodesics and affine parameter-
ization

Let C be a timelike curve with endpoints A and B. The action for a particle
of mass m moving on C is

B
1= —mcz/ dr (2.1)
A
where 7 is proper time on C. Since

dr =/ —ds? = \/—dzrda? g, = \/—EFE" g, dN (22)

. . . 1
where A is an arbitrary parameter on C and z* = %\, we have

AB

Ix]=—-m dX\\/—EHEv g (c=1) (2.3)

Aa

The particle worldline, C, will be such that §//dz()\) = 0. By definition,
this is a geodesic. For the purpose of finding geodesics, an equivalent action
is

Ilze] — 2 / " N e () g — mPe(V)] (2.4)
Y \ Juv .

A

where e()) (the ‘einbein’) is a new independent function.

11



Proof of equivalence (for m # 0)

5

1
-0 = —/—akivg,, = —— 2.5
de - mV T m d\ (25)
and (exercise)

61
O

where

=0 = Dui*=(ee)i" (2.6)

di

If (2.5) is substituted into (2.6) we get the EL equation 61/dz* = 0 of the
original action I[z] (exercise), hence equivalence.

d .
DpyVF(\) = —=V* 4 & {p"y} Ve (2.7)

The freedom in the choice of parameter X is equivalent to the freedom in
the choice of function e. Thus any curve 2#(\) for which t# = &#()\) satisfies

DpyttVHE = f(x)t*  (arbitrary f) (2.8)
is a geodesic. Note that for any vector field on C, V#(z(}))),
FDVE = OVE Y {V" p} Ve (2.9)
= Ayl B Ly (2.10)
dA vp
— DpyV* (2.11)

Since t is tangent to the curve C, a vector field V on C for which
Dy = f(MV# (arbitrary f) (2.12)

is said to be parallely transported along the curve. A geodesic is therefore a
curve whose tangent is parallely transported along it (w.r.t. the affine con-
nection).

A natural choice of parameterization is one for which
Dyt =0 (14 = 3+) (2.13)

This is called affine parameterization. For a timelike geodesic it corresponds
to e(A\) = constant, or

A o< T + constant (2.14)

12



The einbein form of the particle action has the advantage that we can
take the m — 0 limit to get the action for a massless particle. In this case
or
o
while (2.6) is unchanged. We still have the freedom to choose e(\) and the
choice e = constant is again called affine parameterization.

0 = ds*°=0 (m=0) (2.15)

Summary
dat(N) 1 m+#0
b — —
Let ¢ N and o {0 m—0 (-
Then
. Dt = wo_
t- Dttt = D(A)t 0 (2.16

ds® = —oad)\?

are the equations of affinely-parameterized timelike or null geodesics.

)

2.2 Symmetries and Killing Vectors
Consider the transformation
at — ot — okt (xz), (e —e) (2.17)

Then (Exercise)

AB
Iz,e] = Iz, e] — % dx e 1t (£k9),, +0O (a?) (2.18)
Aa
where
(£69) = B9 +E 90 + K g (2.19)
= 2Dk,) (Exercise) (2.20)

Thus the action is invariant to first order if
£rg =0 (2.21)

A vector field k#(z) with this property is a Killing vector field. k is asso-
ciated with a symmetry of the particle action and hence with a conserved
charge. This charge is (Exercise)

Q = k'p, (2.22)

13




where p,, is the particle’s 4-momentum.

oL ey
Pu = g ¢ o (2.23)
dx”
= MG when m # 0 (2.24)

Exercise Check that the Buler-Lagrange equations imply

aQ _
ax
Quantize, p, — —i0/0x* = —i0,. Then

0

Q — —iktd, (2.25)

Thus the components of k can be viewed as the components of a differential
operator in the basis {0,}.

k= k"o, (2.26)

It is convenient to identify this operator with the vector field. Similarly for
all other vector fields, e.g. the tangent vector to a curve z#(\) with affine
parameter A.

dxt d
t =119, = ——0, = — 2.2
Bood ™" dx (2.27)

For any vector field, k, local coordinates can be found such that

k=0/0¢ (2.28)
where & is one of the coordinates. In such a coordinate system

0
£kg,ul/ - 8_&,9;111 (229)

So k is Killing if g,, is independent of §.
e.g. for Schwarzschild 0;g,, = 0, so 0/0t is a Killing vector field. The
conserved quantity is

v

dt
mk“ﬁgw = Mmoo = —me (¢ = energy/unit mass) (2.30)

14



2.3 Spherically-Symmetric Pressure Free Collapse

While it is impossible to say with complete confidence that a real star of mass
M > 3Mg will collapse to a BH, it is easy to invent idealized, but physically
possible, stars that definitely do collapse to black holes. One such ‘star’ is
a spherically-symmetric ball of ‘dust’ (i.e. zero pressure fluid). Birkhoff’s
theorem implies that the metric outside the star is the Schwarzschild metric.
Choose units for which

G=1, c—1. (2.31)
Then
2M 2M\
d82 = — <1 — T) dtz —+ <1 — T) d?"z —+ 7"de2 (232)
where
dQ? = d6* + sin? @dy®  (metric on a unit 2-sphere) (2.33)

This is valid outside the star but also, by continuity of the metric, at the
surface. If » = R(t) on the surface we have

(-3)-(-3) e

On the surface zero pressure and spherical symmetry implies that a point on
the surface follows a radial timelike geodesic, so d2*> = 0 and ds? = —d72,

Cofemene e

But also, since 0/t is a Killing vector we have conservation of energy:

ds® = — dt* + R?d0?, (R — %R) (2.34)

dr R /) dr

e is constant on the geodesics. Using this in (2.35) gives

1= [(1—%) — (1— %)4 R? (1—%>_252 (2.37)

. 1 oM\ 2% /oM
o 1-=— o 14€? 2.
i ( R) (R +g> (2.38)

(e < 1 for gravitationally bound particles).

2M
€= —gooﬂ = (1 - —> dat (energy/unit mass) (2.36)

or

15



R2

oIM Rinax R
oM

:1—62

R =0 at R = Runax S0 we consider collapse to begin with zero velocity at
this radius. R then decreases and approaches R = 2M asymptotically as
t — co. So an observer ‘sees’ the star contract at most to R = 2M but no
further.

However from the point of view of an observer on the surface of the star,
the relevant time variable is proper time along a radial geodesic, so use

d _(dt\'d 1 2M Y d
e (& — {1 zZ=) = 2.39
dt <d7’> dr 6( R>d7' ( )
to rewrite (2.38) as
dR\?® [2M ) or [ Ruax
k) I (e —(1- 1 2.4
() (s oG] e

()

Rmax
0 2M

16



Surface of the star falls from R = Rpyax through R = 2M in finite proper
time. In fact, it falls to R = 0 in proper time

M

T (1 —¢)3/2

(Exercise) (2.41)
Nothing special happens at R = 2M which suggests that we investigate the
spacetime near R = 2M in coordinates adapted to infalling observers. It is

convenient to choose massless particles.

On radial null geodesics in Schwarzschild spacetime

1
2 2 (g2
dt* = 7(1 - 2M)2dr = (dr") (2.42)
where
r—2M
* = 2M1 2.4
r r+ n 5 (2.43)

is the Regge-Wheeler radial coordinate. As r ranges from 2M to oo, r*
ranges from —oo to co. Thus

d(t +r*) =0 on radial null geodesics (2.44)
Define the ingoing radial null coordinate v by
v=t+r", —oo<wv<oo (2.45)

and rewrite the Schwarzschild metric in ingoing Eddington-Finkelstein co-
ordinates (v,r,0,).

oM
ds? = (1 - 7) (—dt2 n dr*2> T 202 (2.46)
- _ (1 — ¥> dv® + 2dr dv + r2dQ? (2.47)

This metric is initially defined for r > 2M since the relation v = ¢ 4 r*(r)
between v and r is only defined for r > 2M, but it can now be analytically
continued to all r > 0. Because of the dr dv cross-term the metric in EF
coordinates is non-singular at r = 2M, so the singularity in Schwarzschild
coordinates was really a coordinate singularity. There is nothing at r = 2M
to prevent the star collapsing through r = 2M. This is illustrated by a
Finkelstein diagram, which is a plot of t* = v — r against r:

17



& < <7

light cone
“ A
radial outgoing null
geodesic at r = 2M
surface of the star
r

=0 7 increasing v

collapsing

star ... lines of constant v

The light cones distort as r — 2M from r > 2M, so that no future-directed
timelike or null worldline can reach r > 2M from r» < 2M.

Proof When r <2M,

2M
2drdv = — [—dSQ + (7 — 1> dv® + erQQ} (2.48)
< 0 when ds? <0 (2.49)

for all timelike or null worldlines drdv < 0. dv > 0 for future-directed
worldlines, so dr < 0 with equality when r = 2M, dQ = 0 (i.e. ingoing
radial null geodesics at r = 2M).

2.3.1 Black Holes and White Holes

No signal from the star’s surface can escape to infinity once the surface
has passed through » = 2M. The star has collapsed to a black hole. For

18



the external observer, the surface never actually reaches » = 2M, but as
r — 2M the redshift of light leaving the surface increases exponentially fast
and the star effectively disappears from view within a time ~ MG'/c3. The
late time appearance is dominated by photons escaping from the unstable
photon orbit at » = 3M.

The hypersurface r = 2M acts like a one-way membrane. This may seem
paradoxical in view of the time-reversibility of Einstein’s equations. Define
the outgoing radial null coordinate u by

u=t—r", —oo<u<oo (2.50)
and rewrite the Schwarzschild metric in outgoing Eddington-Finkelstein co-
ordinates (u,r, 0, ).

2M
ds® = — (1 — 7) du? — 2dr du + r*dQ? (2.51)

This metric is initially defined only for » > 2M but it can be analytically
continued to all r > 0. However the r < 2M region in outgoing EF coordi-
nates is not the same as the r < 2M region in ingoing EF coordinates. To
see this, note that for r» < 2M

2M
2drdu = —ds* + (7 — 1> du® + r?dQ? (2.52)
> 0 whends® <0 (2.53)

i.e. drdu > 0 on timelike or null worldlines. But du > 0 for future-directed
worldlines so dr > 0, with equality when » = 2M, dQ) = 0, and ds? = 0. In
this case, a star with a surface at r < 2M must expand and explode through
r = 2M, as illustrated in the following Finkelstein diagram.

19



U+
% increasing u
r = 0 ''''''
e lines of constant u
"""""" surface of star
singularity = Z T b T r=9M

|

I

i

I

I

I

:

I
P
[
I

I

I

I

I

I

I

I

I

This is a white hole, the time reverse of a black hole. Both black and white
holes are allowed by G.R. because of the time reversibility of Einstein’s
equations, but white holes require very special initial conditions near the
singularity, whereas black holes do not, so only black holes can occur in
practice (cf. irreversibility in thermodynamics).

2.3.2 Kruskal-Szekeres Coordinates

The exterior region r > 2M is covered by both ingoing and outgoing
Eddington-Finkelstein coordinates, and we may write the Schwarzschild
metric in terms of (u,v, 6, @)

2M
ds® = — (1 — T) du dv + rdQ? (2.54)

We now introduce the new coordinates (U, V') defined (for » > 2M) by

U= —e /M v —e/tM (2.55)

20



in terms of which the metric is now

—32M°
ds* = 3#e_r/QMdU dV + r?dQ? (2.56)

where r(U, V) is given implicitly by UV = —e” /M or

—oM
Uv = — (r — > ¢r/2M (2.57)

We now have the Schwarzschild metric in KS coordinates (U, V, 0, ¢). Ini-
tially the metric is defined for U < 0 and V' > 0 but it can be extended by
analytic continuation to U > 0 and V' < 0. Note that » = 2M corresponds
to UV =0, i.e. either U = 0 or V = 0. The singularity at r = 0 corresponds
to UV = 1.

It is convenient to plot lines of constant U and V (outgoing or ingoing
radial null geodesics) at 450, so the spacetime diagram now looks like

singularity

L

\_/ singularity

r=20

There are four regions of Kruskal spacetime, depending on the signs of U and
V. Regions I and II are also covered by the ingoing Eddington-Finkelstein
coordinates. These are the only regions relevant to gravitational collapse
because the other regions are then replaced by the star’s interior, e.g. for
collapse of homogeneous ball of pressure-free fluid:

21



singularity

surface of star

Similarly, regions I and III are those relevant to a white hole.

Singularities and Geodesic Completeness

A singularity of the metric is a point at which the determinant of either it or
its inverse vanishes. However, a singularity of the metric may be simply due
to a failure of the coordinate system. A simple two-dimensional example is
the origin in plane polar coordiates, and we have seen that the singularity
of the Schwarzschild metric at the Schwarzschild radius is of this type. Such
singularities are removable. If no coordinate system exists for which the
singularity is removable then it is irremovable, i.e. a genuine singularity of
the spacetime. Any singularity for which some scalar constructed from the
curvature tensor blows up as it is approached is irremovable. Such singu-
larities are called ‘curvature singularities’. The singularity at » = 0 in the
Schwarzschild metric is an example. Not all irremovable singularities are
‘curvature singularities’, however. Consider the singularity at the tip of a
cone formed by rolling up a sheet of paper. All curvature invariants remain
finite as the singularity is approached; in fact, in this two-dimensional exam-
ple the curvature tensor is everywhere zero. If we could assign a curvature
to the singular point at the tip of the cone it would have to be infinite but,
strictly speaking, we cannot include this point as part of the manifold since
there is no coordinate chart that covers it.

We might try to make a virtue of this necessity: by excising the regions
containing irremovable singularities we apparently no longer have to worry
about them. However, this just leaves us with the essentially equivalent
problem of what to do with curves that reach the boundary of the excised

22



region. There is no problem if this boundary is at infinity, i.e. at infinite
affine parameter along all curves that reach it from some specified point in
the interior, but otherwise the inability to continue all curves to all values of
their affine parameters may be taken as the defining feature of a ‘spacetime
singularity’. Note that the concept of affine parameter is not restricted to
geodesics, e.g. the affine parameter on a timelike curves is the proper time
on the curve regardless of whether the curve is a geodesic. This is just as
well, since there is no good physical reason why we should consider only
geodesics. Nevertheless, it is virtually always true that the existence of a
singularity as just defined can be detected by the incompleteness of some
geodesic, i.e. there is some geodesic that cannot be continued to all values
of its affine parameter. For this reason, and because it is simpler, we shall
follow the common practice of defining a spacetime singularity in terms of
‘geodesic incompleteness’. Thus, a spacetime is non-singular if and only if
all geodesics can be extended to all values of their affine parameters, changing
coordinates if necessary.

In the case of the Schwarzschild vacuum solution, a particle on an in-
going radial geodesics will reach the coordinate singularity at » = 2M at
finite affine parameter but, as we have seen, this geodesic can be continued
into region II by an appropriate change of coordinates. Its continuation
will then approach the curvature singularity at r = 0, coming arbitrar-
ily close for finite affine parameter. The excision of any region containing
r = 0 will therefore lead to a incompleteness of the geodesic. The vacuum
Schwarzschild solution is therefore singular. The singularity theorems of
Penrose and Hawking show that geodesic incompleteness is a generic fea-
ture of gravitational collapse, and not just a special feature of spherically
symmetric collapse.

Maximal Analytic Extensions

Whenever we encounter a singularity at finite affine parameter along some
geodesic (timelike, null, or spacelike) our first task is to identify it as re-
movable or irremovable. In the former case we can continue through it by
a change of coordinates. By considering all geodesics we can construct in
this way the mazimal analytic extension of a given spacetime in which any
geodesic that does not terminale on an irremovable singularity can be ex-
tended to arbitrary values of its affine parameter. The Kruskal manifold is
the maximal analytic extension of the Schwarzschild solution, so no more
regions can be found by analytic continuation.

23



2.3.3 Eternal Black Holes

A black hole formed by gravitational collapse is not time-symmetric because
it will continue to exist into the indefinite future but did not always exist in
the past, and vice-versa for white holes. However, one can imagine a time-
symmetric eternal black hole that has always existed (it could equally well
be called an eternal white hole, but isn’t). In this case there is no matter
covering up part of the Kruskal spacetime and all four regions are relevant.
In region I

U
v e H2M (2.58)

so hypersurfaces of constant Schwarzschild time ¢ are straight lines through
the origin in the Kruskal spacetime.

t— constant

These hypersurfaces have a part in region I and a part in region IV. Note
that (U, V) — (=U, —V) is an isometry of the metric so that region IV is
isometric to region I.

To understand the geometry of these ¢ = constant hypersurfaces it

is convenient to rewrite the Schwarzschild metric in isotropic coordinates
(t, p,0, @), where p is the new radial coordinate

. (1 n %)2 P (2.59)
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Then (Exercise)

1-4 2 M\
05—~ () s (143 [ e (2.60)
flat 3-space metric

In isotropic coordinates, the ¢ = constant hypersurfaces are conformally flat,
but to each value of r there corresponds two values of p

7

2M F-—-= 1

The two values of p are exchanged by the isometry, p — M?/4p which has
p = M/2 as its fixed ‘point’, actually a fixed 2-sphere of radius 2M. This
isometry corresponds to the (U, V) — (=U,—V) isometry of the Kruskal
spacetime. The isotropic coordinates cover only regions I and IV since p is
complex for r» < 2M.

p=M/2
p complex
p— 0
t = constant .. flat space
p— 0
flat space p complex I
p=M/2

As p — M/2 from either side the radius of a 2-sphere of constant p on a
t = constant hypersurface decreases to minimum of 2M at p = M/2, so
p = M/2 is a minimal 2-sphere. 1t is the midpoint of an Finstein-Rosen
bridge connecting spatial sections of regions I and IV.
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\ / p =00
o ) Minimum 2-sphere
T at radius 2M, p = M/2
o] N Einstein-Rosen bridge
(‘throat’)
p=0

2.3.4 Time translation in the Kruskal Manifold

The time translation ¢ — ¢ 4 ¢, which is an isometry of the Schwarzschild
metric becomes

U— e /"My, v — /"My (2.61)

in Kruskal coordinates and extends to an isometry of the entire Kruskal
manifold. The infinitesimal version

c c
- = 2.62
oU 4MU’ oV 4MV (2.62)
is generated by the Killing vector field
1 0 0
_ Y = 2.63
K AM (V ov U@U > (2:63)

which equals §/0t in region 1. It has the following properties

timelike in 1& IV
() R=-(01-24) = spacelike in 11 & III
null on r=2M,ie {U=0}U{V =0}

(ii) {U =0} and {V = 0} are fized sets on k.
{U=0} k=09/ov
On{ (V=0} k=0/0u

- v is the natural group parameter on {U = 0}. Orbits of k correspond
to —o0 < v < o0, (where v is well-defined).

} where v, 4 are EF null coordinates.
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(iii) Each point on the Boyer-Kruskal axis, {U =V = 0} (a 2-sphere) is a
fized point of k.

The orbits of k& are shown below

U =
fixed set

}
i
I i fixed points of
e !‘ ............. EF=B-K axis

- orbit of k
(static observer)

2.3.5 Null Hypersurfaces

Let S(x) be a smooth function of the spacetime coordinates z# and consider
a family of hypersurfaces S = constant. The vector fields normal to the
hypersurface are

L= () (5"0,8) 5 (2.64)

where f is an arbitrary non-zero function. If [2 = 0 for a particular hyper-
surface, NV, in the family, then N is said to be a null hypersurface.

Example Schwarzschild in ingoing Eddington-Finkelstein coordinates (r, v, 0, ¢)
and the surface S =r —2M.

= fr) [(1 - g) % + a%} (2.66)

while
2 = ¢"9,50,8f? (2.67)
— g2 = ( - ¥> 12 (2.68)
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so r = 2M 1is a null hypersurface, and
=0
l|7‘:2M - fa_/() (269)

Properties of Null Hypersurfaces

Let N be a null hypersurface with normal [. A vector ¢, tangent to N, is
one for which ¢ -1 = 0. But, since A is null, [ -1 = 0, so [ is itself a tangent
vector, i.e.

d.’[f‘u
“ 2.
* = 5\ (2.70)

for some null curve z#(\) in V.
Proposition The curves z#()\) are geodesics.

Proof Let A be the member S = 0 of the family of (not necessarily null)
hypersurfaces S = constant. Then [# = f¢*”0,5 and hence

[-DI* = (lﬁ@,,f) 98,8 + fg™1°D,8,8 (2.71)
- (z >l“+fg‘“’l”D 9,5 (by symmetry of I') (2.72)
d ~
— il p prpe [ £-1
(dA >z +1rfD (f z,,) (2.73)
d
— - p P _ | AaH 2
- (dA >z +1PDHL, (a 1nf>l (2.74)
- ( L f> "y —12:# <c‘9“ln f) & (2.75)

Although I?|,, = 0 it doesn’t follow that I*#|,. = 0 unless the whole family
of hypersurfaces S = constant is null. However since [? is constant on N,
t#9,1% = 0 for any vector ¢ tangent to A'. Thus

Oul?| o< Ly (2.76)
and therefore

[-DI¥|y o ¥ (2.77)
i.e. z#(\) is a geodesic (with tangent /). The function f can be chosen such

that [ - DI =0, i.e. so that X is an affine parameter.
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Definition The null geodesics z#(\) with affine parameter A, for which
the tangent vectors dz*/dX are normal to a null hypersurface A, are the
generators of N.

Example N is U = 0 hypersurface of Kruskal spacetime. Normal to U =
constant is

f?" r/2M 0
lly = —%% since r = 2M on N (2.79)

Note that [2 = 0, so {? and {>* both vanish on A this is because U =
constant is null for any constant, not just zero. thus [- DI = 0 if f is
constant. Choose f = —16M2e~!. Then

_ 9
T v

is normal to U = 0 and V is an affine parameter for the generator of this
null hypersurface.

! (2.80)

2.3.6 Killing Horizons

Definition A null hypersurface N is a Killing horizon of a Killing vector
field ¢ if, on A, ¢ is normal to V.

Let [ be normal to N such that [ - DI* = 0 (affine parameterization).
Then, since, on N,

¢ = fl (2.81)

for some function f, it follows that

| £ De" = ke, on N | (2.82)

where k = £ - O1n | f| is called the surface gravity.

Formula for surface gravity

Since ¢ is normal to N, Frobenius’ theorem implies that

€Dy |5 =0 (2.83)
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where ‘| |’ indicates total anti-symmetry in the enclosed indices, w,v, p.
For a Killing vector field £, D,§, = D&, (i.e. symmetric part of D,&,
vanishes). In this case (2.83) can be written as

ngu£V|N + (g,uDugp - &Dy&’p) |N =0 (2.84)

Multiply by D*&¥ to get

£, (DHEY) (Dugl/)b\/‘ = —2(DFEY) €L (D)) |N (since DHEY = D[ugl’])(zg@

or
Eo (DHEY) (Do)l = —2(§- DEY) Doyl (2.86)
= —26&- DEyly, (for Killing horizon(2.87)
= —2r%,|, (2.88)

Hence, except at points for which & =0,

1
K = S (D) (D) (2.89)
N

It will turn out that all points at which & = 0 are limit points of orbits of &
for which ¢ # 0, so continuity implies that this formula is valid even when
¢ =0 (Note that £ =0 # D,& =0).

Killing Vector Lemma For a Killing vector field ¢

D,D,¢& — R", &° (2.90)

upo

where R, is the Riemann tensor.

Proof: Exercise (Question I11.1)

Proposition & is constant on orbits of .

Proof Let ¢ be tangent to /. Then, since (2.89) is valid everywhere on A/
t-OK* = — (DMEYD,DLE |y (2.91)

—(DHEV)PR,,,, 6o (using Lemma,) (2.92)
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Now, ¢ is tangent to A (in addition to being normal to it). Choosing t = ¢
we have

§- OK* = — (DHEY) Rl/,upagpga (2.93)
=0 (since Ryppe = —Rupuop) (2.94)

S0 K is constant on orbits of &.

Non-degenerate Killing horizons (x £ 0)

Suppose & # 0 on one orbit of £ in A/. Then this orbit coincides with only
part of a null generator of N. To see this, choose coordinates on N such
that

&= 0 (except at points where & = 0) (2.95)

i.e. such that the group parameter « is one of the coordinates. Then if
o = a(A) on an orbit of £ with an affine parameter A

d
o — 2L foom (2.96)
orbit — 7. 7y .
odx dx *
Now
0
2 n|f] = .
g I/l =k (2.97)

where & is constant for orbit on . For such orbits, f = foe®® for arbitrary
constant fp. Because of freedom to shift a by a constant we can choose
fo = £k without loss of generality, i.e.

X

Jo +tkre™ = = +£e"" + constant (2.98)

Choose constant — 0

(2.99)

As o ranges from —oco to co we cover the A > 0 or the A < 0 portion of
the generator of N (geodesic in NV with normal [). The bifurcation point
A =0 is a fixed point of &, which can be shown to be a 2-sphere, called the
bifurcation 2-sphere, (BK-axis for Kruskal).
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Killing horizon A/,

Bifurcation of §

2-sphere, B

orbits of £

This is called a bifurcate Killing horizon.

Proposition If A is a bifurcate Killing horizon of ¢, with bifurcation 2-
sphere, B, then k2 is constant on A,

Proof k? is constant on each orbit of ¢&. The value of this constant is the

value of k2 at the limit point of the orbit on B, so 2 is constant on N if it
is constant on B. But we saw previously that
2 v o
t- 0K — (DME) PR, 65 ), (2.100)
0 on B since &|5 =0 (2.101)

Since ¢ can be any tangent to B, k2 is constant on B, and hence on V.

Example N is {U =0} U{V =0} of Kruskal spacetime, and & = k, the
time-translation Killing vector field.

On N,
1 0
MVW on {U - 0}
k— — fl (2.102)
1y o v
am - au © -
where
Ly w—o 9 on U—0)
a0t e gv ot W
f _ , = (2.103)
1 0
—mU on {V—O} % on {VZO}
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Since [ is normal to N, N is a Killing horizon of k. Since [ - DI = 0, the
surface gravity is

1 0
MVWIH|V| on U=0
k=Fk-0ln|f] = (2.104)
1 0
—MUWIH|U| on V=0
1
m on {UZO}
- (2.105)
_ L on {V =0}

AM
So k? = 1/(4M)? is indeed a constant on N. Note that orbits of k lie either
entirely in {U = 0} or in {V = 0} or are fixed points on B, which allows a

difference of sign in  on the two branches of V.
3

[N.B. Reinstating factors of ¢ and G, |k| = 4GM]

Normalization of

If AV is a Killing horizon of ¢ with surface gravity x, then it is also a Killing
horizon of ¢ with surface gravity ¢?x [from formula (2.89) for x| for any
constant ¢. Thus surface gravity is not a property of N alone, it also depends
on the normalization of &.

There is no natural normalization of £ on A since £? = 0 there, but in
an asymptotically flat spacetime there is a natural normalization at spatial
infinity, e.g. for the time-translation Killing vector field &£ we choose

E2— -1 as r— o0 (2.106)
This fixes k, and hence &, up to a sign, and the sign of « is fixed by requiring
k to be future-directed.
Degenerate Killing Horizon (k = 0)
In this case, the group parameter on the horizon is also an affine parameter,
so there is no bifurcation 2-sphere. More on this case later.
2.3.7 Rindler spacetime

Return to Schwarzschild solution

oM oM\ 1
ds® = — (1 — 7) dt® + (1 - 7) dr? + r?dQ0? (2.107)
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and let
2

x
—2M = — 2.108
r i (2.108)
Then
2M (kx)? 1
1= - " = 2.109
r 1+ (k)2 (” 4M> (2.109)
~ (k) near z = 0 (2.110)
dr* = (kz)’ds? (2.111)
so for r &~ 2M we have
1
ds? m~ —(kz)?dt? + da® + 4—szﬂz (2.112)
2-dim Rindler 9-sphere of

spacetime

radius 1/(2k)

so we can expect to learn something about the spacetime near the Killing
horizon at r = 2M by studying the 2-dimensional Rindler spacetime

ds* = —(kx)?dt? + da? (z >0) (2.113)

This metric is singular at z = 0, but this is just a coordinate singularity. To
see this, introduce the Kruskal-type coordinates

U' = —ze™™ V= ge (2.114)

in terms of which the Rindler metric becomes

ds* = —dU’ dv’ (2.115)
Now set

U'=T-X, V=T+X (2.116)
to get

ds® = —dT? + dX* (2.117)

i.e. the Rindler spacetime is just 2-dim Minkowsk: in unusual coordinates.
Moreover, the Rindler coordinates with z > 0 cover only the U’ <0, V' >0
region of 2d Minkowski
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U/ V/

region covered by z > 0 Rindler
(corresponds to region I of
Kruskal spacetime)

From what we know about the surface » — 2M of Schwarzschild it follows
that the lines U’ = 0, V! = 0, i.e. = 0 of Rindler is a Killing horizon of
k = 0/0t with surface gravity +x.

Exercise
(i) Show that U’ = 0 and V' = 0 are null curves.
(ii) Show that
kﬁ(V’% —U’%) (2.118)
and that k|;,_g is normal to U’ = 0. (So {U’ = 0} is a Killing horizon).
(iii) (k- DEY|yi_g = kK" (2.119)

Note that k? = —(kx)? — —oo as & — 00, S0 there is no natural nor-
malization of k for Rindler.

i.e. In contrast to Schwarzschild only the fact that k #£ 0 is a property
of the Killing horizon itself - the actual value of £ depends on an arbitrary
normalization of k& — so what is the meaning of the value of K?

Acceleration Horizons

Proposition The proper acceleration of a particle at £ = ™! in Rindler
spacetime (i.e. on an orbit of k) is constant and equal to a.
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Proof A particle on a timelike orbit X#(7) of a Killing vector field £ has
4-velocity

&’H

m_ S5 i o= —
ut = (_§2)1/2 (since u ox & and u - u 1) (2.120)
Its proper 4-acceleration is
a = Dgut =u- Dut (2.121)
£ Der (-0 ¢
= 2.122
_&’2 + 2&’2 ( )
But & - 9¢% = 2¢1¢v D ¢, = 0 for Killing vector field, so
§- Dgr
ot = = (2.123)

and ‘proper acceleration’ is magnitude |a| of a*.

For Rindler with & = k we have (Exercise)

1 0 1 0
80
L 1 \1/2
o] = (a"a”g,)"* = (— U,V,> (2.125)
_ % (2.126)

so for z = a~! (constant) we have |a| = a, i.e. orbits of k in Rindler are
worldlines of constant proper acceleration. The acceleration increases with-
out bound as x — 0, so the Killing horizon at x = 0 is called an acceleration
horizon.

" worldlines of 2 = constant
orbits of k = 3/0t
in Rindler spacetime
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