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A Preliminary Note

These notes are intended for a two-month, graduate-level course. Ad-
dressed to future researchers in a Centre mainly devoted to Field Theory,
they avoid the ex cathedra style frequently assumed by teachers of the sub-
ject. Mainly, General Relativity is not presented as a finished theory.

Emphasis is laid on the basic tenets and on comparison of gravitation
with the other fundamental interactions of Nature. Thus, a little more space
than would be expected in such a short text is devoted to the equivalence
principle.

The equivalence principle leads to universality, a distinguishing feature of
the gravitational field. The other fundamental interactions of Nature—the
electromagnetic, the weak and the strong interactions, which are described
in terms of gauge theories—are not universal.

These notes, are intended as a short guide to the main aspects of the
subject. The reader is urged to refer to the basic texts we have used, each
one excellent in its own approach:

• L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Perg-
amon, Oxford, 1971)

• C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation (Freeman,
New York, 1973)

• S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972)

• R. M. Wald, General Relativity (The University of Chicago Press,
Chicago, 1984)

• J. L. Synge, Relativity: The General Theory (North-Holland, Amster-
dam, 1960)
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Chapter 1

Introduction

1.1 General Concepts

§ 1.1 All elementary particles feel gravitation the same. More specifically,

particles with different masses experience a different gravitational force, but

in such a way that all of them acquire the same acceleration and, given the

same initial conditions, follow the same path. Such universality of response

is the most fundamental characteristic of the gravitational interaction. It is a

unique property, peculiar to gravitation: no other basic interaction of Nature

has it.

Due to universality, the gravitational interaction admits a description

which makes no use of the concept of force. In this description, instead of

acting through a force, the presence of a gravitational field is represented

by a deformation of the spacetime structure. This deformation, however,

preserves the pseudo-riemannian character of the flat Minkowski spacetime

of Special Relativity, the non-deformed spacetime that represents absence of

gravitation. In other words, the presence of a gravitational field is supposed

to produce curvature, but no other kind of spacetime deformation.

A free particle in flat space follows a straight line, that is, a curve keeping

a constant direction. A geodesic is a curve keeping a constant direction on

a curved space. As the only effect of the gravitational interaction is to bend

spacetime so as to endow it with curvature, a particle submitted exclusively

to gravity will follow a geodesic of the deformed spacetime.
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This is the approach of Einstein’s General Relativity, according to which

the gravitational interaction is described by a geometrization of spacetime.

It is important to remark that only an interaction presenting the property of

universality can be described by such a geometrization.

1.2 Some Basic Notions

§ 1.2 Before going further, let us recall some general notions taken from

classical physics. They will need refinements later on, but are here put in a

language loose enough to make them valid both in the relativistic and the

non-relativistic cases.

Frame: a reference frame is a coordinate system for space positions, to which
a clock is bound.

Inertia: a reference frame such that free (unsubmitted to any forces) mo-
tion takes place with constant velocity is an inertial frame; in classical
physics, the force law in an inertial frame is mdvk

dt
= F k; in Special

Relativity, the force law in an inertial frame is

m
d

ds
Ua = F a, (1.1)

where U is the four-velocity U = (γ, γv/c), with γ = 1/
√

1 − v2/c2 (as
U is dimensionless, F above has not the mechanical dimension of a force
— only Fc2 has). Incidentally, we are stuck to cartesian coordinates to
discuss accelerations: the second time derivative of a coordinate is an
acceleration only if that coordinate is cartesian.

Transitivity: a reference frame moving with constant velocity with respect
to an inertial frame is also an inertial frame;

Relativity: all the laws of nature are the same in all inertial frames; or,
alternatively, the equations describing them are invariant under the
transformations (of space coordinates and time) taking one inertial
frame into the other; or still, the equations describing the laws of Nature
in terms of space coordinates and time keep their forms in different
inertial frames; this “principle” can be seen as an experimental fact; in
non-relativistic classical physics, the transformations referred to belong
to the Galilei group; in Special Relativity, to the Poincaré group.
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Causality: in non-relativistic classical physics the interactions are given by
the potential energy, which usually depends only on the space coordi-
nates; forces on a given particle, caused by all the others, depend only
on their position at a given instant; a change in position changes the
force instantaneously; this instantaneous propagation effect — or ac-
tion at a distance — is a typicallly classical, non-relativistic feature; it
violates special-relativistic causality; Special Relativity takes into ac-
count the experimental fact that light has a finite velocity in vacuum
and says that no effect can propagate faster than that velocity.

Fields: there have been tentatives to preserve action at a distance in a
relativistic context, but a simpler way to consider interactions while
respecting Special Relativity is of common use in field theory: interac-
tions are mediated by a field, which has a well-defined behaviour under
transformations; disturbances propagate, as said above, with finite ve-
locities.

1.3 The Equivalence Principle

Equivalence is a guiding principle, which inspired Einstein in his construction
of General Relativity. It is firmly rooted on experience.∗

In its most usual form, the Principle includes three sub–principles: the
weak, the strong and that which is called “Einstein’s equivalence principle”.
We shall come back and forth to them along these notes. Let us shortly list
them with a few comments.

§ 1.3 The weak equivalence principle: universality of free fall, or inertial

mass = gravitational mass.

In a gravitational field, all pointlike structureless particles fol-

low one same path; that path is fixed once given (i) an initial

position x(t0) and (ii) the correspondent velocity ẋ(t0).

This leads to a force equation which is a second order ordinary differential

equation. No characteristic of any special particle, no particular property

∗ Those interested in the experimental status will find a recent appraisal in C. M. Will,
The Confrontation between General Relativity and Experiment, arXiv:gr-qc/0103036 12
Mar 2001. Theoretical issues are discussed by B. Mashhoon, Measurement Theory and
General Relativity, gr-qc/0003014, and Relativity and Nonlocality, gr-qc/0011013 v2.
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appears in the equation. Gravitation is consequently universal. Being uni-

versal, it can be seen as a property of space itself. It determines geometrical

properties which are common to all particles. The weak equivalence princi-

ple goes back to Galileo. It raises to the status of fundamental principle a

deep experimental fact: the equality of inertial and gravitational masses of

all bodies.

The strong equivalence principle: (Einstein’s lift) says that

Gravitation can be made to vanish locally through an appro-

priate choice of frame.

It requires that, for any and every particle and at each point x0, there exists

a frame in which ẍµ = 0.

Einstein’s equivalence principle requires, besides the weak principle,

the local validity of Poincaré invariance — that is, of Special Relativity. This

invariance is, in Minkowski space, summed up in the Lorentz metric. The

requirement suggests that the above deformation caused by gravitation is a

change in that metric.

In its complete form, the equivalence principle

1. provides an operational definition of the gravitational interaction;

2. geometrizes it;

3. fixes the equation of motion of the test particles.

§ 1.4 Use has been made above of some undefined concepts, such as “path”,

and “local”. A more precise formulation requires more mathematics, and will

be left to later sections. We shall, for example, rephrase the Principle as a

prescription saying how an expression valid in Special Relativity is changed

once in the presence of a gravitational field. What changes is the notion of

derivative, and that change requires the concept of connection. The prescrip-

tion (of “minimal coupling”) will be seen after that notion is introduced.
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§ 1.5 Now, forces equally felt by all bodies were known since long. They are

the inertial forces, whose name comes from their turning up in non-inertial

frames. Examples on Earth (not an inertial system !) are the centrifugal

force and the Coriolis force. We shall begin by recalling what such forces

are in Classical Mechanics, in particular how they appear related to changes

of coordinates. We shall then show how a metric appears in an non-inertial

frame, and how that metric changes the law of force in a very special way.

1.3.1 Inertial Forces

§ 1.6 In a frame attached to Earth (that is, rotating with a certain angular

velocity ω), a body of mass m moving with velocity Ẋ on which an external

force Fext acts will actually experience a “strange” total force. Let us recall

in rough brushstrokes how that happens.

A simplified model for the motion of a particle in a system attached to

Earth is taken from the classical formalism of rigid body motion.† It runs as

follows: The rotating
Earth

Start with an inertial cartesian system, the space system (“inertial” means

— we insist — devoid of proper acceleration). A point particle will

have coordinates {xi}, collectively written as a column vector x = (xi).

Under the action of a force f , its velocity and acceleration will be, with

respect to that system, ẋ and ẍ. If the particle has mass m, the force

will be f = m ẍ.

Consider now another coordinate system (the body system) which rotates

around the origin of the first. The point particle will have coordinates

X in this system. The relation between the coordinates will be given

by a rotation matrix R,

X = R x.

The forces acting on the particle in both systems are related by the same

† The standard approach is given in H. Goldstein,Classical Mechanics, Addison–Wesley,
Reading, Mass., 1982. A modern description can be found in J. L. McCauley,Classical
Mechanics, Cambridge University Press, Cambridge, 1997.
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relation,

F = R f .

We are using symbols with capitals (X, F, Ω, . . . ) for quantities re-

ferred to the body system, and the corresponding small letters (x, f ,

ω, . . . ) for the same quantities as “seen from” the space system.

Now comes the crucial point: as Earth is rotating with respect to the space

system, a different rotation is necessary at each time to pass from that

system to the body system; this is to say that the rotation matrix R

is time-dependent. In consequence, the velocity and the acceleration

seen from Earth’s system are given by

Ẋ = Ṙ x + R ẋ

Ẍ = R̈ x + 2Ṙ ẋ + R ẍ. (1.2)

Introduce the matrix ω = − R−1Ṙ. It is an antisymmetric 3 × 3 matrix,

consequently equivalent to a vector. That vector, with components

ωk = 1
2

εk
ij ωij (1.3)

(which is the same as ωij = εijkωk), is Earth’s angular velocity seen

from the space system. ω is, thus, a matrix version of the angular

velocity. It will correspond, in the body system, to

Ω = RωR−1 = − Ṙ R−1.

Comment 1.1 Just in case, εijk is the 3-dimensional Kronecker symbol in 3-
dimensional space: ε123 = 1; any odd exchange of indices changes the sign; εijk = 0
if there are repeated indices. Indices are raised and lowered with the Kronecker
delta δij , defined by δii = 1 and δij = 0 if i �= j. In consequence, εijk = εijk =
εi

jk, etc. The usual vector product has components given by (v × u)i = (v ∧ u)i

= εijkujvk. An antisymmetric matrix like ω, acting on a vector will give ωijvj =
εijkωkvj = (ω × v)i.

A few relations turn out without much ado: Ω2 = Rω2R−1, Ω̇ = Rω̇R−1

and

ω̇ − ω ω = − R−1R̈ ,

6



or

R̈ = R [ω̇ − ω ω] .

Substitutions put then Eq. (1.2) into the form

Ẍ + 2 Ω Ẋ + [Ω̇ + Ω2] X = R ẍ

The above relationship between 3 × 3 matrices and vectors takes matrix

action on vectors into vector products: ω x = ω×x, etc. Transcribing

into vector products and multiplying by the mass, the above equation

acquires its standard form in terms of forces,

m Ẍ = − m Ω × Ω × X︸ ︷︷ ︸ − 2m Ω × Ẋ︸ ︷︷ ︸ − m Ω̇ × X︸ ︷︷ ︸ + Fext .

centrifugal Coriolis fluctuation

We have indicated the usual names of the contributions. A few words

on each of them

fluctuation force: in most cases can be neglected for Earth, whose angular

velocity is very nearly constant.

centrifugal force: opposite to Earth’s attraction, it is already taken into

account by any balance (you are fatter than you think, your mass is

larger than suggested by your your weight by a few grams ! the ratio

is 3/1000 at the equator).

Coriolis force: responsible for trade winds, rivers’ one-sided overflows, as-

symmetric wear of rails by trains, and the effect shown by the Foucault

pendulum.

§ 1.7 Inertial forces have once been called “ficticious”, because they disap-

pear when seen from an inertial system at rest. We have met them when

we started from such a frame and transformed to coordinates attached to

Earth. We have listed the measurable effects to emphasize that they are

actually very real forces, though frame-dependent.

§ 1.8 The remarkable fact is that each body feels them the same. Think of

the examples given for the Coriolis force: air, water and iron feel them, and

7



in the same way. Inertial forces are “universal”, just like gravitation. This

has led Einstein to his formidable stroke of genius, to conceive gravitation as

an inertial force.

§ 1.9 Nevertheless, if gravitation were an inertial effect, it should be ob-

tained by changing to a non-inertial frame. And here comes a problem. In

Classical Mechanics, time is a parameter, external to the coordinate system.

In Special Relativity, with Minkowski’s invention of spacetime, time under-

went a violent conceptual change: no more a parameter, it became the fourth

coordinate (in our notation, the zeroth one).

Classical non-inertial frames are obtained from inertial frames by trans-

formations which depend on time. Relativistic non-inertial frames should be

obtained by transformations which depend on spacetime. Time–dependent

coordinate changes ought to be special cases of more general transforma-

tions, dependent on all the spacetime coordinates. In order to be put into

a position closer to inertial forces, and concomitantly respect Special Rela-

tivity, gravitation should be related to the dependence of frames on all the

coordinates.

§ 1.10 Universality of inertial forces has been the first hint towards General

Relativity. A second ingredient is the notion of field. The concept allows the

best approach to interactions coherent with Special Relativity. All known

forces are mediated by fields on spacetime. Now, if gravitation is to be

represented by a field, it should, by the considerations above, be a universal

field, equally felt by every particle. It should change spacetime itself. And,

of all the fields present in a space the metric — the first fundamental form,

as it is also called — seemed to be the basic one. The simplest way to

change spacetime would be to change its metric. Furthermore, the metric

does change when looked at from a non-inertial frame.

§ 1.11 The Lorentz metric η of Special Relativity is rather trivial. There

is a coordinate system (the cartesian system) in which the line element of Lorentz
metric

Minkowski space takes the form

ds2 = ηabdxadxb = dx0dx0 − dx1dx1 − dx2dx2 − dx3dx3

8



= c2dt2 − dx2 − dy2 − dz2 . (1.4)

Take two points P and Q in Minkowski spacetime, and consider the in-

tegral ∫ Q

P

ds =

∫ Q

P

√
ηabdxadxb.

Its value depends on the path chosen. In consequence, it is actually a func-

tional on the space of paths between P and Q,

S[γPQ] =

∫
γPQ

ds. (1.5)

An extremal of this functional would be a curve γ such that δS[γ] =
∫

δds

= 0. Now,

δds2 = 2 ds δds = 2 ηab dxaδdxb,

so that

δds = ηab
dxa

ds
δdxb = ηab Ua δdxb .

Thus, commuting d and δ and integrating by parts,

δS[γ] =

∫ Q

P

ηab
dxa

ds

dδxb

ds
ds = −

∫ Q

P

ηab
d

ds

dxa

ds
δxb ds

= −
∫ Q

P

ηab
d

ds
Ua δxb ds.

The variations δxb are arbitrary. If we want to have δS[γ] = 0, the integrand

must vanish. Thus, an extremal of S[γ] will satisfy

d

ds
Ua = 0. (1.6)

This is the equation of a straight line, the force law (1.1) when F a = 0.

The solution of this differential equation is fixed once initial conditions are

given. We learn here that a vanishing acceleration is related to an extremal

of S[γPQ].

§ 1.12 Let us see through an example what happens when a force is present.

For that it is better to notice beforehand that, when considering fields, it is

9



in general the action which is extremal. Simple dimensional analysis shows

that, in order to have a real physical action, we must take

S = − mc

∫
ds (1.7)

instead of the “length”. Consider the case of a charged test particle. The

coupling of a particle of charge e to an electromagnetic potential A is given

by Aaj
a = e AaU

a, so that the action along a curve is

Sem[γ] = − e

c

∫
γ

AaU
ads = − e

c

∫
γ

Aadxa.

The variation is

δSem[γ] = − e

c

∫
γ

δAadxa − e

c

∫
γ

Aadδxa = − e

c

∫
γ

δAadxa +
e

c

∫
γ

dAbδx
b

= − e

c

∫
γ

∂bAaδx
bdxa +

e

c

∫
γ

∂aAbδx
bdxa = − e

c

∫
γ

[∂bAa − ∂aAb]δx
b dxa

ds
ds

= − e

c

∫
γ

Fba Uaδxbds .

Combining the two pieces, the variation of the total action

S = −mc

∫ Q

P

ds − e

c

∫ Q

P

Aadxa (1.8)

is

δS =

∫ Q

P

[
ηab mc

d

ds
Ua − e

c
FbaU

a

]
δxbds.

The extremal satisfies Lorentz
force law

mc
d

ds
Ua =

e

c
F a

b U b, (1.9)

which is the Lorentz force law and has the form of the general case (1.1).

1.3.2 The Wake of Non-Trivial Metric

Let us see now — in another example — that the metric changes when
viewed from a non-inertial system. This fact suggests that, if gravitation is
to be related to non-inertial systems, a gravitational field is to be related to
a non-trivial metric.
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§ 1.13 Consider a rotating disc (details can be seen in Møller’s book‡), seen

as a system performing a uniform rotation with angular velocity ω on the x,

y plane:

x = r cos(θ + ωt) ; y = r sin(θ + ωt) ; Z = z ;

X = R cos θ ; Y = R sin θ.

This is the same as

x = X cos ωt − Y sin ωt ; y = Y cos ωt + X sin ωt .

As there is no contraction along the radius (the motion being orthogonal

to it), R = r. Both systems coincide at t = 0. Now, given the standard

Minkowski line element

ds2 = c2dt2 − dx2 − dy2 − dz2

in cartesian (“space”, inertial) coordinates (x0, x1, x2, x3) = (ct, x, y, z), how

will a “body” observer on the disk see it ?

It is immediate that

dx = dr cos(θ + ωt) − r sin(θ + ωt)[dθ + ωdt]

dy = dr sin(θ + ωt) + r cos(θ + ωt)[dθ + ωdt]

dx2 = dr2 cos2(θ + ωt) + r2 sin2(θ + ωt)[dθ + ωdt]2

−2rdr cos(θ + ωt) sin(θ + ωt)[dθ + ωdt] ;

dy2 = dr2 sin2(θ + ωt) + r2 cos2(θ + ωt)[dθ + ωdt]2

+2rdr sin(θ + ωt) cos(θ + ωt)[dθ + ωdt]

∴ dx2 + dy2 = dR2 + R2(dθ2 + ω2dt2 + 2ωdθdt).

It follows from

dX2 + dY 2 = dR2 + R2dθ2,

that

dx2 + dy2 = dX2 + dY 2 + R2ω2dt2 + 2ωR2dθdt.

‡ C. Møller, The Theory of Relativity, Oxford at Clarendon Press, Oxford, 1966, mainly
in §8.9.
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A simple check shows that

XdY − Y dX = R2dθ,

so that

dx2 + dy2 = dX2 + dY 2 + R2ω2dt2 + 2ωXdY dt − 2ωY dXdt.

Thus,

ds2 = (1 − ω2R2

c2
) c2dt2 − dX2 − dY 2 − 2ωXdY dt + 2ωY dXdt − dZ2 .

In the moving body system, with coordinates (X0, X1, X2, X3) = (ct, X, Y, Z =

z) the metric will be

ds2 = gµνdXµdXν ,

where the only non-vanishing components of the modified metric g are:

g11 = g22 = g33 = −1; g01 = g10 = ωY/c; g02 = g20 = − ωX/c;

g00 = 1 − ω2R2

c2
.

This is better visualized as the matrix

g = (gµν) =




1 − ω2R2

c2
ωY/c − ωX/c 0

ωY/c −1 0 0

− ωX/c 0 −1 0

0 0 0 −1


 . (1.10)

We can go one step further an define the body time coordinate T to be

such that dT =
√

1 − ω2R2/c2 dt, that is,

T =
√

1 − ω2R2/c2 t .

This expression is physically appealing, as it is the same as T =
√

1 − v2/c2 t,

the time-contraction of Special Relativity, if we take into account the fact

that a point with coordinates (R, θ) will have squared velocity v2 = ω2R2.

We see that, anyhow, the body coordinate system can be used only for points
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satisfying the condition ωR < c. In the body coordinates (cT, X, Y, Z), the

line element becomes

ds2 = c2dT 2 − dX2 − dY 2 − dZ2 + 2ω[Y dX − XdY ]
dT√

1 − ω2R2/c2
.

(1.11)

Time, as measured by the accelerated frame, differs from that measured in

the inertial frame. And, anyhow, the metric has changed. This is the point

we wanted to make: when we change to a non-inertial system the metric

undergoes a significant transformation, even in Special Relativity.

Comment 1.2 Put β = ωR/c. Matrix (1.10) and its inverse are

g = (gµν) =


 1−β2 β Y

R − β X
R 0

β Y
R −1 0 0

− β X
R 0 −1 0

0 0 0 − 1


 ; g−1 = (gµν) =




1 β Y
R − β X

R 0

β Y
R β2 Y 2

R2 −1 − β2XY

R2 0

− β X
R − β2XY

R2 β2 X2

R2 −1 0

0 0 0 − 1


 .

1.3.3 Towards Geometry

§ 1.14 We have said that the only effect of a gravitational field is to bend

spacetime, so that straight lines become geodesics. Now, there are two quite

distinct definitions of a straight line, which coincide on flat spaces but not

on spaces endowed with more sophisticated geometries. A straight line going

from a point P to a point Q is

1. among all the lines linking P to Q, that with the shortest length;

2. among all the lines linking P to Q, that which keeps the same direction

all along.

There is a clear problem with the first definition: length presupposes a

metric — a real, positive-definite metric. The Lorentz metric does not define

lengths, but pseudo-lengths. There is always a “zero-length” path between

any two points in Minkowski space. In Minkowski space,
∫

ds is actually

maximal for a straight line. Curved lines, or broken ones, give a smaller

pseudo-length. We have introduced a minus sign in Eq.(1.7) in order to

conform to the current notion of “minimal action”.

The second definition can be carried over to spacetime of any kind, but

at a price. Keeping the same direction means “keeping the tangent velocity
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vector constant”. The derivative of that vector along the line should vanish.

Now, derivatives of vectors on non-flat spaces require an extra concept, that

of connection — which, will, anyhow, turn up when the first definition is

used. We shall consequently feel forced to talk a lot about connections in

what follows.

§ 1.15 Consider an arbitrary metric g, defining the interval by general
metric

ds2 = gµνdxµdxν .

What happens now to the integral of Eq.(1.7) with a point-dependent metric?

Consider again a charged test particle, but now in the presence of a non-trivial

metric. We shall retrace the steps leading to the Lorentz force law, with the

action

S = −mc

∫
γPQ

ds − e

c

∫
γPQ

Aµdxµ, (1.12)

but now with ds =
√

gµνdxµdxν .

1. Take first the variation

δds2 = 2dsδds = δ[gµνdxµdxν ] = dxµdxνδgµν + 2gµνdxµδdxν

∴ δds = 1
2

dxµ

ds
dxν

ds
∂λgµνδx

λds + gµν
dxµ

ds
δdxν

ds
ds

We have conveniently divided and multiplied by ds.

2. We now insert this in the first piece of the action and integrate by parts

the last term, getting

δS = −mc

∫
γPQ

[
1
2

dxµ

ds
dxρ

ds
∂νgµρ − d

ds
(gµν

dxµ

ds
)
]
δxνds

− e

c

∫
γPQ

[δAµdxµ + Aµdδxµ]. (1.13)

3. The derivative d
ds

(gµν
dxµ

ds
) is

d

ds
(gµν

dxµ

ds
) =

dxµ

ds

d

ds
gµν + gµν

d

ds
Uµ = UµU ν∂νgµν + gµν

d

ds
Uµ

= gµν
d

ds
Uµ + UµUρ∂ρgµν = gµν

d

ds
Uµ + 1

2
UσUρ[∂ρgσν + ∂σgρν ].
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4. Collecting terms in the metric sector, and integrating by parts in the

electromagnetic sector,

δS = −mc

∫
γPQ

[
−gµν

d

ds
Uµ − 1

2
UσUρ (∂ρgσν + ∂σgρν − ∂νgµρ)

]
δxνds

− e

c

∫
γPQ

[∂νAµδx
νdxµ − δxν∂µAνdxµ] = (1.14)

−mc

∫
γPQ

gµν

[
− d

ds
Uµ − UσUρ

{
1
2

gµλ (∂ρgσλ + ∂σgρλ − ∂λgσρ)
}]

δxνds

− e

c

∫
γPQ

[∂νAµδx
νdxµ − δxν∂µAνdxµ]. (1.15)

5. We meet here an important character of all metric theories. The ex-

pression between curly brackets is the Christoffel symbol, which will be Christoffel
symbol

indicated by the notation
◦
Γ:

◦
Γ

µ
σρ = 1

2
gµλ (∂ρgσλ + ∂σgρλ − ∂λgσρ) . (1.16)

6. After arranging the terms, we get

δS =∫
γPQ

[
mc gµν

(
d

ds
Uµ +

◦
Γ

µ
σρU

σUρ

)
− e

c
(∂νAρ − ∂ρAν)U

ρ

]
δxνds.

(1.17)

7. The variations δxν , except at the fixed endpoints, is quite arbitrary. To

have δS = 0, the integrand must vanish. Which gives, after contracting

with gλν ,

mc

(
d

ds
Uλ +

◦
Γ

λ
σρU

σUρ

)
=

e

c
F λ

ρUρ . (1.18)

8. This is the Lorentz law of force in the presence of a non-trivial metric.

We see that what appears as acceleration is now

◦
A

λ =
d

ds
Uλ +

◦
Γ

λ
σρU

σUρ. (1.19)
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The Christoffel symbol is a non-tensorial quantity, a connection. We

shall see later that a reference frame can be always chosen in which it

vanishes at a point. The law of force

mc

(
d

ds
Uλ +

◦
Γ

λ
σρU

σUρ

)
= F λ (1.20)

will, in that frame and at that point, reduce to that holding for a trivial

metric, Eq. (1.1).

9. In the absence of forces, the resulting expression, geodesic
equation

d

ds
Uλ +

◦
Γ

λ
σρU

σUρ = 0, (1.21)

is the geodesic equation, defining the “straightest” possible line on a

space in which the metric is non-trivial.

Comment 1.3 An accelerated frame creates the illusion of a force. Suppose a point P is
“at rest”. It may represent a vessel in space, far from any other body. An astronaut in
the spacecraft can use gyros and accelerometers to check its state of motion. It will never
be able to say that it is actually at rest, only that it has some constant velocity. Its own
reference frame will be inertial. Assume another craft approaches at a velocity which is
constant relative to P , and observes P . It will measure the distance from P , see that the
velocity ẋ is constant. That observer will also be inertial.

Suppose now that the second vessel accelerates towards P . It will then see ẍ �= 0, and
will interpret this result in the normal way: there is a force pulling P . That force is clearly
an illusion: it would have opposite sign if the accelerated observer moved away from P .
No force acts on P , the force is due to the observer’s own acceleration. It comes from the
observer, not from P .

Comment 1.4 Curvature creates the illusion of a force. Two old travellers (say, Hero-
dotus and Pausanias) move northwards on Earth, starting from two distinct points on the
equator. Suppose they somehow communicate, and have a means to evaluate their relative
distance. They will notice that that distance decreases with their progress until, near the
pole, they will see it dwindle to nothing. Suppose further they have ancient notions, and
think the Earth is flat. How would they explain it ? They would think there were some
force, some attractive force between them. And what is the real explanation ? It is simply
that Earth’s surface is a curved space. The force is an illusion, born from the flatness
prejudice.
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§ 1.16 Gravitation is very weak. To present time, no gravitational bending

in the trajectory of an elementary particle has been experimentally observed.

Only large agglomerates of fermions have been seen to experience it. Never-

theless, an effect on the phase of the wave-function has been detected, both

for neutrons and atoms.§

§ 1.17 Suppose that, of all elementary particles, one single existed which did

not feel gravitation. That would be enough to change all the picture. The

underlying spacetime would remain Minkowski’s, and the metric responsible

for gravitation would be a field gµν on that, by itself flat, spacetime.

Spacetime is a geometric construct. Gravitation should change the geom-
etry of spacetime. This comes from what has been said above: coordinates,
metric, connection and frames are part of the differential-geometrical struc-
ture of spacetime. We shall need to examine that structure. The next chapter
is devoted to the main aspects of differential geometry.

§ The so-called “COW experiment” with neutrons is described in R. Colella, A. W.
Overhauser and S. A. Werner, Phys. Rev. Lett. 34, 1472 (1975). See also U. Bonse
and T. Wroblevski, Phys. Rev. Lett. 51, 1401 (1983). Experiments with atoms are
reviewed in C. J. Bordé, Matter wave interferometers: a synthetic approach, and in B.
Young, M. Kasevich and S. Chu, Precision atom interferometry with light pulses, in Atom
Interferometry, P. R. Bergman (editor) (Academic Press, San Diego, 1997).
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Chapter 2

Geometry

The basic equations of Physics are differential equations. Now, not every
space accepts differentials and derivatives. Every time a derivative is written
in some space, a lot of underlying structure is assumed, taken for granted. It
is supposed that that space is a differentiable (or smooth) manifold. We shall
give in what follows a short survey of the steps leading to that concept. That
will include many other notions taken for granted, as that of “coordinate”,
“parameter”, “curve”, “continuous”, and the very idea of space.

2.1 Differential Geometry

Physicists work with sets of numbers, provided by experiments, which they
must somehow organize. They make – always implicitly – a large number
of assumptions when conceiving and preparing their experiments and a few
more when interpreting them. For example, they suppose that the use of
coordinates is justified: every time they have to face a continuum set of
values, it is through coordinates that they distinguish two points from each
other. Now, not every kind of point-set accept coordinates. Those which do
accept coordinates are specifically structured sets called manifolds. Roughly
speaking, manifolds are sets on which, at least around each point, everything
looks usual, that is, looks Euclidean.

§ 2.1 Let us recall that a distance function is a function d taking any pair

(p, q) of points of a set X into the real line R and satisfying the following four distance
function

conditions : (i) d(p, q) ≥ 0 for all pairs (p, q); (ii) d(p, q) = 0 if and only if

p = q; (iii) d(p, q) = d(q, p) for all pairs (p, q); (iv) d(p, r) + d(r, q) ≥ d(p, q)

for any three points p, q, r. It is thus a mapping d: X×X → R+. A space on
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which a distance function is defined is a metric space. For historical reasons,

a distance function is here (and frequently) called a metric, though it would

be better to separate the two concepts (see in section 2.1.4, page 40, how a

positive-definite metric, which is a tensor field, can define a distance).

§ 2.2 The Euclidean spaces are the basic spaces we shall start with. The 3-

dimensional space E
3 consists of the set R

3 of ordered triples of real numbers p

= (p1, p2, p3), q = (q1, q2, q3), etc, endowed with the distance function d(p, q)

=
[∑3

i=1(p
i − qi)2

]1/2
. A r-ball around p is the set of points q such that

d(p, q) < r, for r a positive number. These open balls define a topology, that

is, a family of subsets of E
3 leading to a well-defined concept of continuity.

It was thought for much time that a topology was necessarily an offspring of

a distance function. This is not true. The modern concept, presented below

(§2.7), is more abstract and does without any distance function. euclidean
spaces

Non-relativistic fields live on space E
3 or, if we prefer, on the direct–

product spacetime E
3 ⊗ E

1, with the extra E
1 accounting for time. In non-

relativistic physics space and time are independent of each other, and this is

encoded in the direct–product character: there is one distance function for

space, another for time. In relativistic theories, space and time are blended

together in an inseparable way, constituting a real spacetime. The notion of

spacetime was introduced by Poincaré and Minkowski in Special Relativity.

Minkowski spacetime, to be described later, is the paradigm of every other

spacetime.

For the n-dimensional Euclidean space E
n, the point set is the set R

n of

ordered n-uples p = (p1, p2, ..., pn) of real numbers and the topology is the

ball-topology of the distance function d(p, q) = [
∑n

i=1(p
i − qi)2]

1/2
. E

n is the

basic, initially assumed space, as even differential manifolds will be presently

defined so as to generalize it. The introduction of coordinates on a general

space S will require that S “resemble” some E
n around each point.

§ 2.3 When we say “around each point”, mathematicians say “locally”. For

example, manifolds are “locally Euclidean” sets. But not every set of points

can resemble, even locally, an Euclidean space. In order to do so, a point set

must have very special properties. To begin with, it must have a topology. A

set with such an underlying structure is a “topological space”. Manifolds are
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topological spaces with some particular properties which make them locally

Euclidean spaces.

The procedure then runs as follows:

it is supposed that we know everything on usual Analysis, that is,

Analysis on Euclidean spaces. Structures are then progressively

added up to the point at which it becomes possible to transfer

notions from the Euclidean to general spaces. This is, as a rule,

only possible locally, in a neighborhood around each point.

§ 2.4 We shall later on represent physical systems by fields. Such fields are

present somewhere in space and time, which are put together in a unified

spacetime. We should say what we mean by that. But there is more. Fields

are idealized objects, which we represent mathematically as members of some

other spaces. We talk about vectors, matrices, functions, etc. There will be

spaces of vectors, of matrices, of functions. And still more: we operate with

these fields. We add and multiply them, sometimes integrate them, or take

their derivatives. Each one of these operations requires, in order to have

a meaning, that the objects they act upon belong to spaces with specific

properties.

2.1.1 Spaces

§ 2.5 Thus, first task, it will be necessary to say what we understand by

“spaces” in general. Mathematicians have built up a systematic theory of

spaces, which describes and classifies them in a progressive order of complex-

ity. This theory uses two primitive notions - sets, and functions from one

set to another. The elements belonging to a space may be vectors, matrices,

functions, other sets, etc, but the standard language calls simply “points”

the members of a generic space.

A space S is an organized set of points, a point set plus a structure.

This structure is a division of S, a convenient family of subsets. Different general
notion

purposes require different kinds of subset families. For example, in order to

arrive at a well-defined notion of integration, a measure space is necessary,

which demands a special type of sub-division called “σ-algebra”. To make of
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S a topological space, we decompose it in another peculiar way. The latter

will be our main interest because most spaces used in Physics are, to start

with, topological spaces.

§ 2.6 That this is so is not evident at every moment. The customary ap-

proach is just the contrary. The physicist will implant the object he needs

without asking beforehand about the possibilities of the underlying space.

He can do that because Physics is an experimental science. He is justi-

fied in introducing an object if he obtains results confirmed by experiment.

A well-succeeded experiment brings forth evidence favoring all the assump-

tions made, explicit or not. Summing up: the additional objects (say, fields)

defined on a certain space (say, spacetime) may serve to probe into the un-

derlying structure of that space.

§ 2.7 Topological spaces are, thus, the primary spaces. Let us begin with

them.

Given a point set S, a topology is a family T of subsets of S topology

to which belong: (a) the whole set S and the empty set ∅; (b)

the intersection
⋂

k Uk of any finite sub-family of members Uk of

T ; (c) the union
⋃

k Uk of any sub-family (finite or infinite) of

members.

A topological space (S, T ) is a set of points S on which a

topology T is defined.

The members of the family T are, by definition, the open sets of (S, T ).

Notice that a topological space is indicated by the pair (S, T ). There are, in

general, many different possible topologies on a given point set S, and each

one will make of S a different topological space. Two extreme topologies

are always possible on any S. The discrete space is the topological space

(S, P (S)), with the power set P (S) — the set of all subsets of S — as the

topology. For each point p, the set {p} containing only p is open. The other

extreme case is the indiscrete (or trivial) topology T = {∅, S}.
Any subset of S containing a point p is a neighborhood of p. The comple-

ment of an open set is (by definition) a closed set. A set which is open in a
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topology may be closed in another. It follows that ∅ and S are closed (and

open!) sets in all topologies.

Comment 2.1 The space (S, T ) is connected if ∅ and S are the only sets which are
simultaneously open and closed. In this case S cannot be decomposed into the union of
two disjoint open sets (this is different from path-connectedness). In the discrete topology
all open sets are also closed, so that unconnectedness is extreme.

§ 2.8 Let f : A → B be a function between two topological spaces A (the

domain) and B (the target). The inverse image of a subset X of B by f is the

set f<−1>(X) = {a ∈ A such that f(a) ∈ X}. The function f is continuous

if the inverse images of all the open sets of the target space B are open sets

of the domain space A. It is necessary to specify the topology whenever one continuity

speaks of a continuous function. A function defined on a discrete space is

automatically continuous. On an indiscrete space, a function is hard put to

be continuous.

§ 2.9 A topology is a metric topology when its open sets are the open balls

Br(p) = {q ∈ S such that d(q, p) < r} of some distance function. The

simplest example of such a “ball-topology” is the discrete topology P (S): it

can be obtained from the so-called discrete metric: d(p, q) = 1 if p �= q, and

d(p, q) = 0 if p = q. In general, however, topologies are independent of any

distance function: the trivial topology cannot be given by any metric.

§ 2.10 A caveat is in order here. When we say “metric” we mean a positive-

definite distance function as above. Physicists use the word “metrics” for

some invertible bilinear forms which are not positive-definite, and this prac-

tice is progressively infecting mathematicians. We shall follow this seemingly

inevitable trend, though it should be clear that only positive-definite metrics

can define a topology. The fundamental bilinear form of relativistic Physics,

the Lorentz metric on Minkowski space-time, does not define true distances

between points.

§ 2.11 We have introduced Euclidean spaces E
n in §2.2. These spaces, and

Euclidean half-spaces (or upper-spaces) E
n
+ are, at least for Physics, the

most important of all topological spaces. This is so because Physics deals
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mostly with manifolds, and a manifold (differentiable or not) will be a space

which can be approximated by some E
n or E

n
+ in some neighborhood of

each point (that is, “locally”). The half-space E
n
+ has for point set R

n
+ =

{p = (p1, p2, ..., pn) ∈ R
n such that pn ≥ 0}. Its topology is that “induced”

by the ball-topology of E
n (the open sets are the intersections of R

n
+ with

the balls of E
n). This space is essential to the definition of manifolds-with-

boundary.

§ 2.12 A bijective function f : A → B will be a homeomorphism if it is

continuous and has a continuous inverse. It will take open sets into open sets homeo−
morphism

and its inverse will do the same. Two spaces are homeomorphic when there

exists a homeomorphism between them. A homeomorphism is an equiva-

lence relation: it establishes a complete equivalence between two topological

spaces, as it preserves all the purely topological properties. Under a home-

omorphism, images and pre-images of open sets are open, and images and

pre-images of closed sets are closed. Two homeomorphic spaces are just the

same topological space. A straight line and one branch of a hyperbola are

the same topological space. The same is true of the circle and the ellipse.

A 2-dimensional sphere S2 can be stretched in a continuous way to become

an ellipsoid or a tetrahedron. From a purely topological point of view, these

three surfaces are indistinguishable. There is no homeomorphism, on the

other hand, between S2 and a torus T 2, which is a quite distinct topological

space.

Take again the Euclidean space E
n. Any isometry (distance–preserving

mapping) will be a homeomorphism, in particular any translation. Also

homothecies with reason α �= 0 are homeomorphisms. From these two prop-

erties it follows that each open ball of E
n is homeomorphic to the whole E

n.

Suppose a space S has some open set U which is homeomorphic to an open

set (a ball) in some E
n: there is a homeomorphic mapping φ : U → ball,

f(p ∈ U) = x = (x1, x2, ..., xn). Such a local homeomorphism φ, with E
n as

target space, is called a coordinate mapping and the values xk are coordinates coordinates

of p.

§ 2.13 S is locally Euclidean if, for every point p ∈ S, there exists an open

set U to which p belongs, which is homeomorphic to either an open set in
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some Es or an open set in some Es
+. The number s is the dimension of S at

the point p.

§ 2.14 We arrive in this way at one of the concepts announced at the begin-

ning of this chapter: a (topological) manifold is a connected space on which

coordinates make sense.

A manifold is a topological space S which is manifold

(i) locally Euclidean;

(ii) has the same dimension s at all points, which is then the

dimension of S, s = dim S.

Points whose neighborhoods are homeomorphic to open sets of Es
+ and not

to open sets of Es constitute the boundary ∂S of S. Manifolds including

points of this kind are “manifolds–with–boundary”.

The local-Euclidean character will allow the definition of coordinates and

will have the role of a “complementarity principle”: in the local limit, a

differentiable manifold will look still more Euclidean than the topological

manifolds. Notice that we are indicating dimensions by m, n, s, etc, and

manifolds by the corresponding capitals: dim M = m; dim N = n, dim S =

s, etc.

§ 2.15 Each point p on a manifold has a neighborhood U homeomorphic to

an open set in some En, and so to En itself. The corresponding homeomor-

phism

φ : U → open set in En

will give local coordinates around p. The neighborhood U is called a co-

ordinate neighborhood of p. The pair (U, φ) is a chart, or local system of

coordinates (LSC) around p.

We must be more specific. Take En itself: an open neighborhood V of a

point q ∈ En is homeomorphic to another open set of En. Each homeomor-

phism u: V → V ′ included in En defines a system of coordinate functions

(what we usually call coordinate systems: Cartesian, polar, spherical, ellip-

tic, stereographic, etc.). Take the composite homeomorphism x: S → En,

x(p) = (x1, x2, ..., xn) = (u1 ◦ φ(p), u2 ◦ φ(p), ..., un ◦ φ(p)). The functions
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xi = ui ◦ φ: U → E1 will be the local coordinates around p. We shall use

the simplified notation (U, x) for the chart. Different systems of coordinate

functions require different number of charts to plot the space S. For E2 itself, coordinates

one Cartesian system is enough to chart the whole space: V = E2, u = the

identity mapping. The polar system, however, requires at least two charts.

For the sphere S2, stereographic coordinates require only two charts, while

the cartesian system requires four.

Comment 2.2 Suppose the polar system with only one chart: E2 → R
1
+ × (0, 2π). Intu-

itively, close points (r, 0+ε) and (r, 2 π−ε), for ε small, are represented by faraway points.
Technically, due to the necessity of using open sets, the whole half-line (r, 0) is absent, not
represented. Besides the chart above, it is necessary to use E2 → R

1
+ × (α, α + 2 π), with

α arbitrary in the interval (0, 2 π).

Comment 2.3 Classical Physics needs coordinates to distinguish points. We see that
the method of coordinates can only work on locally Euclidean spaces.

§ 2.16 As we have said, every time we write a derivative, a differential, a

Laplacian we are assuming an additional underlying structure for the space

we are working on: it must be a differentiable (or smooth) manifold. And

manifolds and smooth manifolds can be introduced by imposing progres-

sively restrictive conditions on the decomposition which has led to topologi-

cal spaces. Just as not every space accepts coordinates (that is, not not every

space is a manifold), there are spaces on which to differentiate is impossible.

We arrive finally at the crucial notion by which knowledge on differentiability

on Euclidean spaces is translated into knowledge on differentiability on more

general spaces. We insist that knowledge of Analysis on Euclidean spaces is

taken for granted.

A given point p ∈ S can in principle have many different coordinate neigh-

borhoods and charts. Given any two charts (U, x) and (V, y) with U
⋂

V �= ∅,
to a given point p in their intersection, p ∈ U

⋂
V , will correspond coordi-

nates x = x(p) and y = y(p). These coordinates will be related by a homeo-

morphism between open sets of En,

y ◦ x<−1> : En → En

which is a coordinate transformation, usually written yi = yi(x1, x2, . . . , xn).

Its inverse is x ◦ y<−1>, written xj = xj(y1, y2, ..., yn). Both the coordinate
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transformation and its inverse are functions between Euclidean spaces. If

both are C∞ (differentiable to any order) as functions from En into En, the

two local systems of coordinates are said to be differentially related. An atlas

on the manifold is a collection of charts {(Ua, ya)} such that
⋃

a Ua = S.

If all the charts are differentially related in their intersections, it will be a

differentiable atlas.∗ The chain rule

δi
k =

∂yi

∂xj

∂xj

∂yk

says that both Jacobians are �= 0.†

An extra chart (W, x), not belonging to a differentiable atlas A, is said

to be admissible to A if, on the intersections of W with all the coordinate-

neighborhoods of A, all the coordinate transformations from the atlas LSC’s

to (W, x) are C∞. If we add to a differentiable atlas all its admissible charts,

we get a complete atlas, or maximal atlas, or C∞–structure. The extension

of a differentiable atlas, obtained in this way, is unique (this is a theorem).

A topological manifold with a complete differentiable atlas is

a differentiable manifold. differentiable
manifold

§ 2.17 A function f between two smooth manifolds is a differentiable func-

tion (or smooth function) when, given the two atlases, there are coordinates

systems in which y ◦ f ◦ x<−1> is differentiable as a function between

Euclidean spaces.

§ 2.18 A curve on a space S is a function a : I → S, a : t → a(t), taking the

interval I = [0, 1] ⊂ E1 into S. The variable t ∈ I is the curve parameter.

If the function a is continuous, then a is a path. If the function a is also curves

differentiable, we have a smooth curve.‡ When a(0) = a(1), a is a closed

∗This requirement of infinite differentiability can be reduced to k-differentiability (to
give a “Ck–atlas”).

†If some atlas exists on S whose Jacobians are all positive, S is orientable. When 2–
dimensional, an orientable manifold has two faces. The Möbius strip and the Klein bottle
are non-orientable manifolds.

‡The trajectory in a brownian motion is continuous (thus, a path) but is not differen-
tiable (not smooth) at the turning points.
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curve, or a loop, which can be alternatively defined as a function from the

circle S1 into S. Some topological properties of a space can be grasped by

studying its possible paths.

Comment 2.4 This is the subject matter of homotopy theory. We shall need one concept
— contractibility — for which the notion of homotopy is an indispensable preliminary.

Let f, g : X → Y be two continuous functions between the topological spaces X
and Y. They are homotopic to each other (f ≈ g) if there exists a continuous function
F : X × I → Y such that F (p, 0) = f(p) and F (p, 1) = g(p) for every p ∈ X. The
function F (p, t) is a one-parameter family of continuous functions interpolating between
f and g, a homotopy between f and g. Homotopy is an equivalence relation between
continuous functions and establishes also a certain equivalence between spaces. Given any
space Z, let idZ : Z → Z be the identity mapping on Z, idZ(p) = p for every p ∈ Z. A
continuous function f : X → Y is a homotopic equivalence between X and Y if there exists
a continuous function g : Y → X such that g ◦ f ≈ idX and f ◦ g ≈ idY . The function
g is a kind of “homotopic inverse” to f . When such a homotopic equivalence exists, X
and Y are homotopic. Every homeomorphism is a homotopic equivalence but not every
homotopic equivalence is a homeomorphism.

Comment 2.5 A space X is contractible if it is homotopically equivalent to a point. More
precisely, there must be a continuous function h : X × I → X and a constant function
f : X → X, f(p) = c (a fixed point) for all p ∈ X, such that h(p, 0) = p = idX(p) and
h(p, 1) = f(p) = c. Contractibility has important consequences in standard, 3-dimensional
vector analysis. For example, the statements that divergenceless fluxes are rotational
(div v = 0 ⇒ v = rot w) and irrotational fluxes are potential (rot v = 0 ⇒ v = grad φ)
are valid only on contractible spaces. These properties generalize to differential forms (see
page 38).

§ 2.19 We have seen that two spaces are equivalent from a purely topologi-

cal point of view when related by a homeomorphism, a topology-preserving

transformation. A similar role is played, for spaces endowed with a differ-

entiable structure, by a diffeomorphism: a diffeomorphism is a differentiable diffeo−
morphism

homeomorphism whose inverse is also smooth. When some diffeomorphism

exists between two smooth manifolds, they are said to be diffeomorphic. In

this case, besides being topologically the same, they have equivalent differ-

entiable structures. They are the same differentiable manifold.

§ 2.20 Linear spaces (or vector spaces) are spaces allowing for addition and

rescaling of their members. This means that we know how to add two vectors vector
space
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so that the result remains in the same space, and also to multiply a vector by

some number to obtain another vector, also a member of the same space. In

the cases we shall be interested in, that number will be a complex number.

In that case, we have a vector space V over the field C of complex numbers.

Every vector space V has a dual V ∗, another linear space formed by all the

linear mappings taking V into C. If we indicate a vector ∈ V by the “ket”

|v >, a member of the dual can be indicated by the “bra” < u|. The latter will

be a linear mapping taking, for example, |v > into a complex number, which

we indicate by < u|v >. Being linear means that a vector a|v > + b|w > will

be taken by < u| into the complex number a < u|v > + b < u|w >. Two

linear spaces with the same finite dimension (= maximal number of linearly

independent vectors) are isomorphic. If the dimension of V is finite, V and

V ∗ have the same dimension and are, consequently, isomorphic.

Comment 2.6 Every vector space is contractible. Many of the most remarkable proper-
ties of En come from its being, besides a topological space, a vector space. En itself and
any open ball of En are contractible. This means that any coordinate open set, which is
homeomorphic to some such ball, is also contractible.

Comment 2.7 A vector space V can have a norm, which is a distance function and
defines consequently a certain topology called the “norm topology”. In this case, V is a
metric space. For instance, a norm may come from an inner product, a mapping from
the Cartesian set product V × V into C, V × V → C, (v, u) → < v, u > with suitable
properties. The number ‖v‖ = (| < v, v > |)1/2 will be the norm of v ∈ V induced by
the inner product. This is a special norm, as norms can be defined independently of inner
products. When the norm comes from an inner space, we have a Hilbert space. When
not, a Banach space. When the operations (multiplication by a scalar and addition) keep
a certain coherence with the topology, we have a topological vector space.

Once in possession of the means to define coordinates, we can proceed to
transfer to manifolds all the (supposedly well–known) results of usual vector
and tensor analysis on Euclidean spaces. Because a manifold is equivalent
to an Euclidean space only locally, this will be possible only in a certain
neighborhood of each point. This is the basic difference between Euclidean
spaces and general manifolds: properties which are “global” on the first hold
only locally on the latter.
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2.1.2 Vector and Tensor Fields

§ 2.21 The best means to transfer the concepts of vectors and tensors from

Euclidean spaces to general differentiable manifolds is through the mediation

of spaces of functions. We have talked on function spaces, such as Hilbert

spaces separable or not, and Banach spaces. It is possible to define many

distinct spaces of functions on a given manifold M , differing from each other

by some characteristics imposed in their definitions: square–integrability for

example, or different kinds of norms. By a suitable choice of conditions we

can actually arrive at a space of functions containing every information on

M . We shall not deal with such involved subjects. At least for the time

being, we shall need only spaces with poorly defined structures, such as the

space of real functions on M , which we shall indicate by R(M).

§ 2.22 Of the many equivalent notions of a vector on E
n, the directional vectors

derivative is the easiest to adapt to differentiable manifolds. Consider the

set R(En) of real functions on E
n. A vector V = (v1, v2, . . . , vn) is a linear

operator on R(En): take a point p ∈ E
n and let f ∈ R(En) be differentiable

in a neighborhood of p. The vector V will take f into the real number

V (f) = v1

[
∂f

∂x1

]
p

+ v2

[
∂f

∂x2

]
p

+ · · · + vn

[
∂f

∂xn

]
p

.

This is the directional derivative of f along the vector V at p. This action

of V on functions respects two conditions:

1. linearity: V (af + bg) = aV (f) + bV (g), ∀a, b ∈ E
1 and ∀f, g ∈ R(En);

2. Leibniz rule: V (f · g) = f · V (g) + g · V (f).

§ 2.23 This conception of vector – an operator acting on functions – can

be defined on a differential manifold N as follows. First, introduce a curve

through a point p ∈ N as a differentiable curve a : (−1, 1) → N such that

a(0) = p (see page 27). It will be denoted by a(t), with t ∈ (−1, 1). When t

varies in this interval, a 1-dimensional continuum of points is obtained on N.

In a chart (U, x) around p, these points will have coordinates ai(t) = xi(t).
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Consider now a function f ∈ R(N). The vector Vp tangent to the curve a(t)

at p is given by

Vp(f) =

[
d

dt
(f ◦ a)(t)

]
t=0

=

[
dxi

dt

]
t=0

∂

∂xi
f .

Vp is independent of f , which is arbitrary. It is an operator Vp : R(N) → E
1.

Now, any vector Vp, tangent at p to some curve on N , is a tangent vector

to N at p. In the particular chart used above, dxk

dt
is the k-th component of

Vp. The components are chart-dependent, but Vp itself is not. From its very

definition, Vp satisfies the conditions (1) and (2) above. A tangent vector on

N at p is just that, a mapping Vp : R(N) → E
1 which is linear and satisfies

the Leibniz rule.

§ 2.24 The vectors tangent to N at p constitute a linear space, the tan-

gent space TpN to the manifold N at p. Given some coordinates x(p) =

(x1, x2, . . . , xn) around the point p, the operators { ∂
∂xi} satisfy conditions (1) tangent

space

and (2) above. More than that, they are linearly independent and conse-

quently constitute a basis for the linear space: any vector can be written in

the form

Vp = V i
p

∂

∂xi
.

The V i
p ’s are the components of Vp in this basis. Notice that each coordinate

xj belongs to R(N). The basis { ∂
∂xi} is the natural, holonomic, or coordinate

basis associated to the coordinate system {xj}. Any other set of n vectors

{ei} which are linearly independent will provide a base for TpN . If there is

no coordinate system {yk} such that ek = ∂
∂yk , the base {ei} is anholonomic

or non-coordinate.

§ 2.25 TpN and E
n are finite vector spaces of the same dimension and are

consequently isomorphic. The tangent space to E
n at some point will be

itself an E
n. Euclidean spaces are diffeomorphic to their own tangent spaces,

and that explains in part their simplicity — in equations written on such

spaces, one can treat indices related to the space itself and to the tangent

spaces on the same footing. This cannot be done on general manifolds.

These tangent vectors are called simply vectors, or contravariant vectors.

The members of the dual cotangent space T ∗
p N , the linear mappings ωp: TpN

→ E
n , are covectors, or covariant vectors.
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§ 2.26 Given an arbitrary basis {ei} of TpN , there exists a unique basis

{αj} of T ∗
p N , its dual basis, with the property αj(ei) = δj

i . Any ωp ∈ T ∗
p N ,

is written ωp = ωp(ei)α
i. Applying Vp to the coordinates xi, we find V i

p

= Vp(x
i), so that Vp = Vp(x

i) ∂
∂xi = α(Vp)ei. The members of the basis

dual to the natural basis { ∂
∂xi} are indicated by {dxi}, with dxj( ∂

∂xi ) =

δj
i . This notation is justified in the usual cases, and extended to general

manifolds (when f is a function between general differentiable manifolds, df

takes vectors into vectors). The notation leads also to the reinterpretation of

the usual expression for the differential of a function, df = ∂f
∂xi dxi, as a linear

operator:

df(Vp) =
∂f

∂xi
dxi(Vp).

In a natural basis,

ωp = ωp(
∂

∂xi
)dxi.

§ 2.27 The same order of ideas can be applied to tensors in general: a tensors

tensor at a point p on a differentiable manifold M is defined as a tensor on

TpM . The usual procedure to define tensors – covariant and contravariant –

on Euclidean vector spaces can be applied also here. A covariant tensor of

order s, for example, is a multilinear mapping taking the Cartesian product

T×s
p M = TpM × TpM · · · × TpM of TpM by itself s-times into the set of real

numbers. A contravariant tensor of order r will be a multilinear mapping

taking the the Cartesian product T ∗×r
p M = T ∗

p M × T ∗
p M · · · × T ∗

p M of T ∗
p M

by itself r-times into E
1. A mixed tensor, s-times covariant and r-times

contravariant, will take the Cartesian product T×s
p M × T ∗×r

p M multilinearly

into E
1. Basis for these spaces are built as the direct product of basis for the

corresponding vector and covector spaces. The whole lore of tensor algebra is

in this way transmitted to a point on a manifold. For example, a symmetric

covariant tensor of order s applies to s vectors to give a real number, and is

indifferent to the exchange of any two arguments:

T (v1, v2, . . . , vk, . . . , vj, . . . , vs) = T (v1, v2, . . . , vj, . . . , vk, . . . , vs).

An antisymmetric covariant tensor of order s applies to s vectors to give a

real number, and change sign at each exchange of two arguments:

T (v1, v2, . . . , vk, . . . , vj, . . . , vs) = − T (v1, v2, . . . , vj, . . . , vk, . . . , vs).
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§ 2.28 Because they will be of special importance, let us say a little more on

such antisymmetric covariant tensors. At each fixed order, they constitute

a vector space. But the tensor product ω ⊗ η of two antisymmetric tensors

ω and η of orders p and q is a (p + q)-tensor which is not antisymmetric,

so that the antisymmetric tensors do not constitute a subalgebra with the

tensor product.

§ 2.29 The wedge product is introduced to recover a closed algebra. First

we define the alternation Alt(T) of a covariant tensor T, which is an anti-

symmetric tensor given by

Alt(T )(v1, v2, . . . , vs) =
1

s!

∑
(P )

(sign P )T (vp1 , vp2 , . . . , vps),

the summation taking place on all the permutations P = (p1, p2, . . . , ps) of

the numbers (1,2,. . . , s) and (sign P) being the parity of P. Given two

antisymmetric tensors, ω of order p and η of order q, their exterior product,

or wedge product, indicated by ω ∧ η, is the (p+q)-antisymmetric tensor

ω ∧ η =
(p + q)!

p! q!
Alt(ω ⊗ η).

With this operation, the set of antisymmetric tensors constitutes the exte-

rior algebra, or Grassmann algebra, encompassing all the vector spaces of Grassmann
algebra

antisymmetric tensors. The following properties come from the definition:

(ω + η) ∧ α = ω ∧ α + η ∧ α; (2.1)

α ∧ (ω + η) = α ∧ ω + α ∧ η; (2.2)

a(ω ∧ η) = (aω) ∧ η = ω ∧ (aη), ∀ a ∈ R; (2.3)

(ω ∧ η) ∧ α = ω ∧ (η ∧ α); (2.4)

ω ∧ η = (−)∂ω∂η η ∧ ω . (2.5)

In the last property, ∂ω and ∂η are the respective orders of ω and η. If

{αi} is a basis for the covectors, the space of s-order antisymmetric tensors

has a basis

{αi1 ∧ αi2 ∧ · · · ∧ αis}, 1 ≤ i1, i2, . . . , is ≤ dim TpM, (2.6)
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in which an antisymmetric covariant s-tensor will be written

ω =
1

s!
ωi1i2...isα

i1 ∧ αi2 ∧ · · · ∧ αis .

In a natural basis {dxj},

ω =
1

s!
ωi1i2...isdxi1 ∧ dxi2 ∧ · · · ∧ dxis .

§ 2.30 Thus, a tensor at a point p ∈ M is a tensor defined on the tangent

space TpM . One can choose a chart around p and use for TpM and T ∗
p M the

natural bases { ∂
∂xi} and {dxj}. A general tensor will be written

T = T i1i2...ir
j1j2...js

∂

∂xi1
⊗ ∂

∂xi2
⊗ · · · ∂

∂xir
⊗ dxj1 ⊗ dxj2 ⊗ · · · ⊗ dxjs .

In another chart, with natural bases { ∂
∂xi′ } and (dxj′), the same tensor will

be written

T = T
i′1i′2...i′r
j′1j′2...j′s

∂

∂xi′1
⊗ ∂

∂xi′2
⊗ · · · ∂

∂xi′r
⊗ dxj′1 ⊗ dxj′2 ⊗ · · · ⊗ dxj′s

= T
i′1i′2...i′r
j′1j′2...j′s

∂xi1

∂xi′1
⊗ ∂xi2

∂xi′2
⊗ · · · ∂xir

∂xi′r
⊗ ∂xj′1

∂xj1
⊗ ∂xj′2

∂xj2
⊗ · · · ∂xj′s

∂xjs

⊗ ∂

∂xi1
⊗ ∂

∂xi2
⊗ · · · ∂

∂xir
⊗ dxj1 ⊗ dxj2 ⊗ · · · ⊗ dxjs , (2.7)

which gives the transformation of the components under changes of coordi-

nates in the charts’ intersection. We find frequently tensors defined as entities

whose components transform in this way, with one Lamé coefficient ∂xj′r
∂xjr for

each index. It should be understood that a tensor is always a tensor with re-

spect to a given group. Just above, the group of coordinate transformations

was involved. General base transformations constitute another group.

§ 2.31 Vectors and tensors have been defined at a fixed point p of a differ-

entiable manifold M . The natural basis we have used is actually {
[

∂
∂xi

]
p
}. A

vector at p ∈ M has been defined as the tangent to a curve a(t) on M , with

a(0) = p. We can associate a vector to each point of the curve by allowing

the variation of the parameter t: Xa(t)(f) = d
dt

(f ◦ a)(t). Xa(t) is then the vector
fields

tangent field to a(t), and a(t) is the integral curve of X through p. In general,

this only makes sense locally, in a neighborhood of p. When X is tangent to

a curve globally, X is a complete field.
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§ 2.32 Let us, for the sake of simplicity take a neighborhood U of p and

suppose a(t) ∈ U , with coordinates (a1(t), a2(t), · · · , am(t)). Then, Xa(t) =
dai

dt
∂

∂ai , and dai

dt
is the component X i

a(t). In this sense, the field whose integral

curve is a(t) is given by the “velocity” da
dt

. Conversely, if a field is given

by its components Xk (x1(t), x2(t), . . . , xm(t)) in some natural basis, its

integral curve x(t) is obtained by solving the system of differential equations

Xk = dxk

dt
. Existence and uniqueness of solutions for such systems hold in

general only locally, as most fields exhibit singularities and are not complete.

Most manifolds accept no complete vector fields at all. Those which do are

called parallelizable. Toruses are parallelizable, but, of all the spheres Sn,

only S1, S3 and S7 are parallelizable. S2 is not.§

§ 2.33 At a point p, Vp takes a function belonging to R(M) into some real

number, Vp : R(M) → R. When we allow p to vary in a coordinate neigh-

borhood, the image point will change as a function of p. By using successive

cordinate transformations and as long as singularities can be surounded, V

can be extended to M . Thus, a vector field is a mapping V : R(M) → R(M).

In this way we arrive at the formal definition of a field:

a vector field V on a smooth manifold M is a linear mapping V : R(M) →
R(M) obeying the Leibniz rule:

X(f · g) = f · X(g) + g · X(f),∀f, g ∈ R(M).

We can say that a vector field is a differentiable choice of a member of TpM

at each p of M . An analogous reasoning can be applied to arrive at tensors

fields of any kind and order.

§ 2.34 Take now a field X, given as X = X i ∂
∂xi . As X(f) ∈ R(M), another

field as Y = Y i ∂
∂xi can act on X(f). The result,

Y Xf = Y j ∂X i

∂xj

∂f

∂xi
+ Y jX i ∂2f

∂xj∂xi
,

does not belong to the tangent space because of the last term, but the com-

mutator

[X, Y ] := (XY − Y X) =

(
X i ∂Y j

∂xi
− Y i ∂Xj

∂xi

)
∂

∂xj

§This is the hedgehog theorem: you cannot comb a hedgehog so that all its prickles
stay flat; there will be always at least one singular point, like the head crown.
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does, and is another vector field. The operation of commutation defines a Lie
algebra

linear algebra. It is also easy to check that

[X, X] = 0, (2.8)

[[X, Y ], Z] + [[Z, X], Y ] + [[Y, Z], X] = 0, (2.9)

the latter being the Jacobi identity. An algebra satisfying these two condi-

tions is a Lie algebra. Thus, the vector fields on a manifold constitute, with

the operation of commutation, a Lie algebra.

2.1.3 Differential Forms

§ 2.35 Differential forms¶ are antisymmetric covariant tensor fields on dif-

ferentiable manifolds. They are of extreme interest because of their good

behavior under mappings. A smooth mapping between M and N take dif-

ferential forms on N into differential forms on M (yes, in that inverse order)

while preserving the operations of exterior product and exterior differenti-

ation (to be defined below). In Physics they have acquired the status of

a new vector calculus: they allow to write most equations in an invariant

(coordinate- and frame-independent) way. The covector fields, or Pfaffian

forms, or still 1-forms, provide basis for higher-order forms, obtained by ex-

terior product [see eq. (2.6)]. The exterior product, whose properties have

been given in eqs.(2.1)-(2.5), generalizes the vector product of E
3 to spaces of

any dimension and thus, through their tangent spaces, to general manifolds.

§ 2.36 The exterior product of two members of a basis {ωi} is a 2-form,

typical member of a basis {ωi ∧ ωj} for the space of 2-forms. In this basis,

a 2-form F , for instance, will be written F = 1
2
Fijω

i ∧ ωj. The basis for the

m-forms on an m-dimensional manifold has a unique member, ω1∧ω2 · · ·ωm.

The nonvanishing m-forms are called volume elements of M , or volume forms.

¶ On the subject, a beginner should start with H. Flanders, Differential Forms, Aca-
demic Press, New York, l963; and then proceed with C. Westenholz, Differential Forms in
Mathematical Physics, North-Holland, Amsterdam, l978; or W. L. Burke, Applied Differ-
ential Geometry, Cambridge University Press, Cambridge, l985; or still with R. Aldrovandi
and J. G. Pereira, Geometrical Physics, World Scientific, Singapore, l995.

35



§ 2.37 The name “differential forms” is misleading: most of them are not

differentials of anything. Perhaps the most elementary form in Physics is

the mechanical work, a Pfaffian form in E
3. In a natural basis, it is written

W = Fkdxk, with the components Fk representing the force. The total work

realized in taking a particle from a point a to point b along a line γ is

Wab[γ] =

∫
γ

W =

∫
γ

Fkdxk,

and in general depends on the chosen line. It will be path-independent only

when the force comes from a potential U as a gradient, Fk = − (grad U)k.

In this case W = −dU , truly the differential of a function, and Wab =

U(a)−U(b). An integrability criterion is: Wab[γ] = 0 for γ any closed curve.

Work related to displacements in a non-potential force field is a typical non-

differential 1-form. Another well-known example is heat exchange.

§ 2.38 In a more geometric mood, the form appearing in the integrand of the

arc length
∫ x

a
ds is not the differential of a function, as the integral obviously

depends on the trajectory from a to x, and is a multi-valued function of x.

The elementary length ds is a prototype form which is not a differential,

despite its conventional appearance. A 1-form is exact if it is a gradient, like

ω = dU . Being exact is not the same as being integrable. Exact forms are

integrable, but non-exact forms may also be integrable if they are of the form

fdU .

§ 2.39 The 0-form f has the differential df = ∂f
∂xi dxi = ∂f

∂xi ∧ dxi, which is a

1-form. The generalization of this differential of a function to forms of any

order is the differential operator d with the following properties:

1. when applied to a k-form, d gives a (k+1)-form;

2. d(α + β) = dα + dβ ;

3. d(α ∧ β) = (dα) ∧ β + (−)∂αα ∧ d(β), where ∂α is the order of α;

4. d2α = ddα ≡ 0 for any form α.
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§ 2.40 The invariant, basis-independent definition of the differential of a

k-form is given in terms of vector fields:

dα(X0, X1, . . . , Xk) =
k∑

i=0

(−)iXi

[
α(X0, X1, . . . , Xi−1, X̂i, Xi+1 . . . , Xk)

]
+

∑
i<j

(−)i+jα([Xi, Xj], X0, X1, . . . , X̂i, . . . , X̂j . . . , Xk).(2.10)

Wherever it appears, the notation X̂n means that Xn is absent. From this

definition, or from the systematic use of the defining conditions, we can

obtain the first examples of derivatives:

• if f is a function (0-form), df = ∂if dxi (gradient) ;

• if A = Ai dxi is a covector (1-form), then dA = 1
2
(∂iAj−∂jAi) dxi∧dxj

(rotational)

Comment 2.8 To grasp something about the meaning of

d2α ≡ 0,

which is usually called the Poincaré lemma, let us examine the simplest case, a 1-form α in
a natural basis: α = αidxi. Its differential is dα = (dαi)∧dxi +αi∧d(dxi) = ∂αi

∂xj dxi∧dxj

= 1
2 (∂αi

∂xj − ∂αj

∂xi ) dxi ∧ dxj . If α is exact, α = df (in components, αi = ∂if) then

dα = d2f = 1
2

[
∂2f

∂xi∂xj
− ∂2f

∂xj∂xi

]
dxi ∧ dxj

and the property d2f ≡ 0 is just the symmetry of the mixed second derivatives of a
function. Along the same lines, if α is not exact, we can consider

d2α =
∂2αi

∂xj∂xk
dxj ∧ dxk ∧ dxi = 1

2

[
∂2αi

∂xj∂xk
− ∂2αi

∂xk∂xj

]
dxj ∧ dxk ∧ dxi = 0.

Thus, the condition d2 ≡ 0 comes from the equality of mixed second derivatives of the
functions αi, related to integrability conditions.

§ 2.41 A form α such that dα = 0 is said to be closed. A form α which can

be written as α = dβ for some β is said to be exact.
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Comment 2.9 It is natural to ask whether every closed form is exact. The answer, given
by the inverse Poincaré lemma, is: yes, but only locally. It is yes in Euclidean spaces,
and differentiable manifolds are locally Euclidean. Every closed form is locally exact. The
precise meaning of “locally” is the following: if dα = 0 at the point p ∈ M , then there
exists a contractible (see below) neighborhood of p in which there exists a form β (the
“local integral” of α) such that α = dβ. But attention: if γ is another form of the same
order of β and satisfying dγ = 0, then also α = d(β +γ). There are infinite forms of which
an exact form is the differential.

The inverse Poincaré lemma gives an expression for the local integral of α = dβ. In
order to state it, we have to introduce still another operation on forms. Given in a natural
basis the p-form

α(x) = αi1i2i3...ip
(x)dxi1 ∧ dxi2 ∧ dxi3 ∧ · · · ∧ dxip

the transgression of α is the (p-1)-form

T α =
p∑

j=1

(−)j−1

∫ 1

0

dttp−1xij αi1i2i3...ip
(tx)

dxi1 ∧ dxi2 . . . ∧ dxij−1 ∧ dxij+1 ∧ · · · ∧ dxip . (2.11)

Notice that, in the x-dependence of α, x is replaced by (tx) in the argument. As t ranges
from 0 to 1, the variables are taken from the origin up to x. This expression is frequently
referred to as the homotopy formula.

The operation T is meaningful only in a star-shaped region, as x is linked to the origin
by the straight line “tx”, but can be generalized to a contractible region. Contractibility
has been defined in Comment 2.5. Consider the interval I = [0, 1]. A space or domain X

is contractible if there exists a continuous function h : X × I → X and a constant function
f : X → X, f(p) = c (a fixed point) for all p ∈ X, such that h(p, 0) = p = idX(p) and
h(p, 1) = f(p) = c. Intuitively, X can be continuously contracted to one of its points.
E

n is contractible (and, consequently, any coordinate neighborhood), but spheres Sn and
toruses Tn are not. The limitation to the result given below comes from this strictly local
property. Well, the lemma then says that, in a contractible region, any form α can be
written in the form

α = dTα + Tdα. (2.12)

When

dα = 0 , (2.13)

α = dTα, (2.14)

so that α is indeed exact and the integral looked for is just β = Tα, always up to γ’s such
that dγ = 0. Of course, the formulae above hold globally on Euclidean spaces, which are
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contractible. The condition for a closed form to be exact on the open set V is that V

be contractible (say, a coordinate neighborhood). On a smooth manifold, every point has
an Euclidean (consequently contractible) neighborhood — and the property holds at least
locally. The sphere S2 requires at least two neighborhoods to be charted, and the lemma
holds only on each of them. The expression stating the closedness of α, dα = 0 becomes,
when written in components, a system of differential equations whose integrability (i.e.,
the existence of a unique integral β) is granted locally. In vector analysis on E

3, this
includes the already mentioned fact that an irrotational flux (dv = rot v = 0) is potential
(v = grad U = dU). If one tries to extend this from one of the S2 neighborhoods, a
singularity inevitably turns up.

§ 2.42 Let us finally comment on the mappings between differential mani-

folds and the announced good–behavior of forms. A C∞ function f : M → N

between differentiable manifolds M and N induces a mapping between the

tangent spaces:

f∗ : TpM → Tf(p)N.

If g is an arbitrary real function on N , g ∈ R(N), this mapping is defined by

[f∗(Xp)](g) = Xp(g ◦ f) (2.15)

for every Xp ∈ TpM and all g ∈ R(N). When M = E
m and N = E

n, f∗ is the

jacobian matrix. In the general case, f∗ is a homomorphism (a mapping which

preserves the algebraic structure) of vector spaces, called the differential of f .

It is also frequently written “df”. When f and g are diffeomorphisms, then

(f ◦ g)∗X = f∗ ◦ g∗X. Still more important, a diffeomorphism f preserves

the commutator:

f∗[X, Y ] = [f∗X, f∗Y ]. (2.16)

Consider now an antisymmetric s-tensor wf(p) on the vector space Tf(p)N .

Then f determines a tensor on TpM by

(f ∗ω)p(v1, v2, . . . , vs) = ωf(p)(f∗v1, f∗v2, . . . , f∗vs). (2.17)

Thus, the mapping f induces a mapping f ∗ between the tensor spaces, work-

ing however in the inverse sense. f ∗ is called a pull-back and f∗, by extension, pull−
back

push-forward. The pull-back has some wonderful properties:
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• f ∗ is linear;

• (f ◦ g)∗ = g∗ ◦ f ∗ .

• f ∗ preserves the exterior product: f ∗ (ω ∧ η) = f ∗ω ∧ f ∗η ;

• f ∗ preserves the exterior derivative: f ∗(dω) = d(f ∗ω).

Mappings between differential manifolds preserve, consequently, the most

important aspects of differential exterior algebra. The well-defined behavior

when mapped between different manifolds makes of the differential forms

the most interesting of all tensors. Notice that all these properties apply also

when f is simply some differentiable transformation mapping M into itself.

2.1.4 Metrics

§ 2.43 The Euclidean space E
3 consists of the set of triples R

3 with the ball-

topology. The balls come from the Euclidean metric, a symmetric second-

order positive-definite tensor g whose components are, in global Cartesian

coordinates, given by gij = δij. Thus, E
3 is R

3 plus the Euclidean metric.

We use this metric to measure lengths in our everyday life, but it happens

frequently that another metric is simultaneously at work on the same R
3.

Suppose, for example, that the space is permeated by a medium endowed

with a point-dependent isotropic refractive index n(p). Light rays will “feel”

the metric g′
ij = n2(p)δij. To “feel” means that they will bend, acquire a

“curved” aspect. Fermat’s principle says simply that light rays will become

geodesics of the new metric, the straightest possible curve if measurements

are made using g′
ij instead of gij. As long as we proceed to measurements

using only light rays, distances – optical lengths – will be different from those

given by the Euclidean metric. Suppose further that the medium is some

compressible fluid, with temperature gradients and all which is necessary to

render point-dependent the derivative of the pressure with respect to the

fluid density at fixed entropy, cs =
(

∂p
∂ρ

)
S
. In that case, sound propagation

will be governed by still another metric, g′′
ij = 1

cs
δij. Nevertheless, in both

cases we use also the Euclidean metric to make measurements, and much

of geometric optics and acoustics comes from comparing the results in both
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metrics involved. These words are only to call attention to the fact that there

is no such a thing like the metric of a space. It happens frequently that more

than one is important in a given situation.

§ 2.44 Bilinear forms are covariant tensors of second order. The tensor

product of two linear forms w and z is defined by (w⊗z) (X,Y) = w(X)·z(Y ).

The most fundamental bilinear form appearing in Physics is the Lorentz

metric on R4 (see the final of this section).

Given a basis {ωj} for the space of 1-forms, the products wi ⊗ wj, with

i, j = 1, 2, . . . , m, constitute a basis for the space of covariant 2-tensors, in

terms of which a bilinear form g is written g = gij wi ⊗ wj. In a natural

basis, g = gij dxi ⊗ dxj.

A metric on a smooth manifold is a bilinear form, denoted g(X, Y ), X ·Y
or < X, Y >, satisfying the following conditions:

1. it is indeed bilinear:

X · (Y + Z) = X · Y + X · Z
(X + Y ) · Z = X · Z + Y · Z;

2. it is symmetric:

X · Y = Y · X;

3. it is non-singular: if X · Y = 0 for every field Y, then X = 0.

In a basis, g(Xi, Xj) = Xi · Xj = gmn ωm(Xi) ωn(Xj), so that

gij = gji = g(Xi, Xj) = Xi · Xj.

It is standard notation to write simply wiwj = w(i⊗wj) = 1
2
(wi⊗wj+wj⊗wi)

for the symmetric part of the bilinear basis, so that

g = gij wiwj

or, in a natural basis,

g = gij dxidxj.
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§ 2.45 Given a field Y = Y iei and a form z = zjw
j in the dual basis,

z(Y ) = < z, Y > = zjY
j. A metric establishes a relation between vector

and covector fields: Y is said to be the contravariant image of a form z

if, for every X, g(X, Y ) = z(X). Then gijY
j = zi. In this case, we write

simply zj = Yj. This is the usual role of the covariant metric, to lower

indices, taking a vector into the corresponding covector. If the mapping

Y → z so defined is onto, the metric is non-degenerate. This is equivalent

to saying that the matrix (gij) is invertible. A contravariant metric ĝ can

then be introduced whose components (denoted by grs) are the elements

of the matrix inverse to (gij). If w and z are the covariant images of X

and Y, defined in a way inverse to the image given above, then ĝ(w, z) =

g(X, Y ). All this defines on the spaces of vector and covector fields an internal

product (X, Y ) := (w, z) := g(X, Y ) = ĝ(w, z). Invertible metrics are called

semi-Riemannian. Although physicists usually call them just Riemannian,

mathematicians more frequently reserve this denomination to non-degenerate

positive-definite metrics, with values in the positive real line R+.

As the Lorentz metric is not positive definite, it does not define balls and

is consequently unable to provide for a topology on Minkowski space-time

(whose topology is, by the way, unknown). A Riemannian manifold is a

smooth manifold on which a Riemannian metric is defined. A theorem due

to Whitney states that it is always possible to define at least one Riemannian

metric on an arbitrary differentiable manifold.

A positive definite metric is presupposed in any measurement: lengths,

angles, volumes, etc. The length of a vector X is introduced as

‖X‖ = (X, X)1/2.

A metric is indefinite when ‖X‖ = 0 does not imply X = 0. It is the case of

Lorentz metric, which attributes zero length to vectors on the light cone.

The length of a curve γ : (a, b) → M is then defined as

Lγ =

∫ b

a

‖dγ

dt
dt‖.

Given two points p, q on a Riemannian manifold M , consider all the piecewise

differentiable curves γ with γ(a) = p and γ(b) = q. The distance between
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p and q is defined as the infimum of the lengths of all such curves between

them:

d(p, q) = inf
γ(t)

∫ b

a

‖dC

dt
dt‖. (2.18)

In this way a metric tensor defines a distance function on M .

§ 2.46 The metrics referred to in the introduction of this section, concerned

with simplified models for the behavior of light rays and sound waves, are

both obtained by multiplying all the components of the Euclidean metric

by a given function. A transformation like gij → g′
ij = f(p) gij is called a

conformal transformation. In angle measurements, the metric appears in a

numerator and in a denominator and in consequence two metrics differing

by a conformal transformation will give the same angles. Conformal trans-

formations preserve the angles, or the cones.

Comment 2.10 To find the angle made by two vector fields U and V at each point,
calculate ||U −V ||2 = ||U ||2 + ||V ||2 - 2 U ·V = U ·U - V ·V - 2 ||U ||||V || cos θUV , that is,
gµν(U − V )µ(U − V )ν = gµνUµUν + gρσV ρV σ -

√
gµνUµUν

√
gρσV ρV σ cos θUV . Then,

θUV = arccos
gµνUµUν + gρσV ρV σ − gµν(U − V )µ(U − V )ν√

gµνUµUν
√

gρσV ρV σ
,

which does not change if gµν is replaced by g′µν = f(p) gµν .

§ 2.47 Geometry has had a very strong historical bond to metric. “Geome-

tries” have been synonymous of “kinds of metric manifolds”. This comes from

the impression that we measure something (say, distance from the origin)

when attributing coordinates to a point. We do not. Only homeomorphisms

are needed in the attribution, and they have nothing to do with metrics.

We hope to have made it clear that a metric on a differentiable manifold is

chosen at convenience.

§ 2.48 Minkowski spacetime is a 4-dimensional connected manifold on which

a certain indefinite metric (the “Lorentz metric”) is defined. Points on space- Minkowski
spacetime

time are called “events”. Being indefinite, the metric defines only a pseudo-

distance function for any pair of points. Given two events x and y with Carte-

sian coordinates (x0, x1, x2, x3) and (y0, y1, y2, y3), their pseudo-distance will
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be

s2 = ηαβ xαxβ = (x0 − y0)2 − (x1 − y1)2 − (x2 − y2)2 − (x3 − y3)2 . (2.19)

This pseudo-distance is called the “interval” between x and y. Notice the

usual practice of attributing the first place, with index zero, to the time–

related coordinate. The Lorentz metric does not define a topology, but es-

tablishes a partial ordering of the events: causality. A general spacetime will

be any differentiable manifold S such that, at each point p, the tangent space

TpS is a Minkowski spacetime. This will induce on S another metric, with

the same set of signs (+,-,-,-) in the diagonalized form. A metric with that

set of signs is said to be “Lorentzian”.

In General Relativity, Einstein’s equations determine a Lorentzian metric

which will be “felt” by any particle or wave travelling in spacetime. They are

non-linear second-order differential equations for the metric, with as source

an energy-momentum density of the other fields in presence. Thus, the metric

depends on the source and on the assumed boundary conditions.

2.2 Pseudo-Riemannian Metric

§ 2.49 Each spacetime is a 4–dimensional pseudo–Riemannian manifold. Its

main character is the fundamental form, or metric

g(x) = gµνdxµdxν . (2.20)

This metric has signature 2. Being symmetric, the matrix g(x) = (gµν) can

be diagonalized. Signature concerns the signs of the eigenvalues: it is the

numbers of eigenvalues with one sign minus the number of eigenvalues with

the opposite sign. It is important because it is an invariant under changes of

coordinates and vector bases. In the convention we shall adopt this means

that, at any selected point P , it is possible to choose coordinates {xµ} in

terms of which gµν takes the form

g(P ) =

(
+|g00| 0 0 0

0 −|g11| 0 0
0 −|g22| 0

0 0 0 −|g33|

)
. (2.21)
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§ 2.50 The first example has been given above: it is the Lorentz metric of

Minkowski space, for which we shall use the notation

η(x) = ηabdxadxb. (2.22)

We are using indices µ, ν, λ, . . . for Riemannian spacetime, and a, b, c, . . . for

Minkowski spacetime.

Minkowski space is the simplest, standard spacetime. Up to the signa-

ture, is an Euclidean space, and as such can be covered by a single, global

coordinate system. This system — the cartesian system — is the father of

all coordinate systems and just puts η in the diagonal form

g(P ) =

(
+1 0 0 0
0 −1 0 0

0 −1 0
0 0 0 −1

)
. (2.23)

Comment 2.11 A metric is a real symmetric non–singular bilinear form. A bilinear form
takes two vectors into a real number: g(V, U) = gµνV µUν ∈ R. When symmetric, the
numbers g(V, U) and g(U, V ) are the same. A metric defines orthogonality. Two vectors
U and V are orthogonal to each other by g if g(V, U) = 0. The metric components can be
disposed in a matrix (gµν). It will have, consequently, ten components on a 4–dimensional
spacetime.

§ 2.51 Given the metric, a vector field V is timelike, spacelike or a null

vector, depending on the sign of gµνV
µV ν :

gµνV
µV ν

{
> 0 timelike

< 0 spacelike

=0 null

(2.24)

V µ are the components of the vector V in the coordinate system {xλ}. Higher

indices indicate a contravariant vector. The metric can be used to lower

indices. From V , obtain a covariant vector, or covector, whose components

are Vµ = gµνV
ν . Einstein’s summation convention is being used: repeated

higher–lower indices are summed over everytime they appear, without the

summation symbol.

§ 2.52 As presented above, with lower indices, the metric is sometimes called

the contravariant metric. The elements of its inverse matrix are indicated by

gµν . Thus, with the Kronecker delta δµ
ν (which is = 1 when µ = ν and zero

otherwise), we have

gµλg
λν = gνλgλµ = δν

µ .
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The set {gµν} is then called the covariant metric, and can be used to raise

indices, or to get a contravariant vector from a covariant vector: V µ = gµνVν .

The same holds for indices of general tensors. Frequently used notations are

g = |g| = det(gµν). Of course, det(gµν) = g−1.

§ 2.53 The norm ds of the infinitesimal displacement dxµ, whose square is

ds2 = gµνdxµdxν (2.25)

is the infinitesimal interval, or simply interval. Given a curve γ with extreme interval

points a and b, the integral

L[γ] =

∫
γ

ds =

∫ b

a

ds (2.26)

along γ is a function(al) of γ, called its “length”.

Comment 2.12 Again a name used by extension of the strictly Riemannian case, in
which this integrals is a true length. A strictly Riemannian metric determines a true
distance between two points. In the case above, the distance between a and b would be
the infimum of L[γ], all curves considered.

Comment 2.13 The determinant of a metric matrix like (2.23) is always negative. In
cartesian coordinates, an integration over 4-space has the form∫

V 4
d4x.

In another coordinate system, a Jacobian turns up. We recall that what appears in
integration measures is the Jacobian up to the sign. Integration using a coordinate system
in which the infinitesimal length takes the form (2.25), and in which the metric has a
negative determinant, is given by the expression∫

V 4

√−g d4x,

which holds in every case.

2.3 The Notion of Connection

Besides well–behaved entities like tensors (including metrics, vectors and
functions), a manifold contains other, not so well-behaved objects. The most
important are connections, essential to the notion of parallelism. We proceed
now to present the physicits’ approach to connections.
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§ 2.54 What we understand by good behavior is: covariance under change

of coordinates. A scalar field is invariant under change of coordinates. Take

the next case in complexity, a vector field V . It will have components V α in

a coordinate system {xα} and components V µ in a coordinate system {yµ}.
The two sets are related by

V µ =
∂yµ

∂xα
V α. (2.27)

This is the standard behavior. It defines a vector by the group of coordinate

transformations. Tensors of any order reproduce it, index by index. The

metric, for example, has its components changed according to

gµν =
∂xα

∂yµ

∂xβ

∂yν
gαβ. (2.28)

Notice by the way that, contracting (2.27) with the gradient operator ∂
∂yµ ,

V µ ∂

∂yµ
= V α ∂yµ

∂xα

∂

∂yµ
= V α ∂

∂xα
.

Thus, the expression

V = V α ∂

∂xα
(2.29)

is invariant under change of coordinates. The vector field V , once conceived

as such a directional derivative, is an invariant concept. This is the notion of

vector field used by the mathematicians: a directional derivative acting on

the functions defined on the manifold.

Take now the derivative of (2.27):

∂

∂yλ
V µ =

∂yµ

∂xα

∂

∂yλ
V α +

∂

∂yλ

[
∂yµ

∂xα

]
V α

=
∂yµ

∂xα

∂xβ

∂yλ

∂

∂xβ
V α +

∂xβ

∂yλ

∂

∂xβ

[
∂yµ

∂xα

]
V α

=
∂yµ

∂xα

∂xβ

∂yλ

∂

∂xβ
V α +

∂xβ

∂yλ

∂2yµ

∂xβ∂xγ
V γ

=
∂xβ

∂yλ

[
∂yµ

∂xα

∂

∂xβ
V α +

∂yµ

∂xα

∂xα

∂yρ

∂2yρ

∂xβ∂xγ
V γ

]
.
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∴ ∂

∂yλ
V µ =

∂xβ

∂yλ

∂yµ

∂xα

[
∂

∂xβ
V α +

∂xα

∂yρ

∂2yρ

∂xβ∂xγ
V γ

]
. (2.30)

If alone, the first term in the right–hand side would confer to the derivative a

good tensor status. The second term breaks that behavior: the derivative of

a vector is not a tensor. In other words, the derivative is not covariant. On

a manifold, it is impossible to tell, for example, whether a vector is constant

or not.

The solution is to change the very definition of derivative by adding an-

other structure. We add to each derivative an extra term involving a new

object Γ: covariant
derivative

∂

∂yλ
V µ ⇒ D

Dyλ
V µ =

∂

∂yλ
V µ + Γµ

νλV
ν

∂

∂xβ
V α ⇒ D

Dxβ
V α =

∂

∂xβ
V α + Γα

γβV γ (2.31)

and impose good behavior of the modified derivative:

D

Dyλ
V µ =

∂xβ

∂yλ

∂yµ

∂xα

D

Dxβ
V α,

or

∂

∂yλ
V µ + Γµ

νλV
ν =

∂xβ

∂yλ

∂yµ

∂xα

[
∂

∂xβ
V α + Γα

γβV γ

]
. (2.32)

We then compare with (2.30) and look for conditions on the object Γ. These

conditions fix the behavior of Γ under coordinate transformations. Γ must

transform according to

Γµ
νλ =

∂xβ

∂yλ

∂yµ

∂xα

∂xγ

∂yν

[
Γα

γβ +
∂xα

∂yρ

∂2yρ

∂xβ∂xγ

]
,

or

Γµ
νλ =

∂yµ

∂xα

∂xγ

∂yν
Γα

γβ
∂xβ

∂yλ
+

∂xβ

∂yλ

∂xγ

∂yν

∂2yµ

∂xβ∂xγ
. (2.33)

This non–covariant behavior of the connection Γ makes of (2.31) a well–

behaved, covariant derivative. We have used a vector field to find how Γ

should behave but, once Γ is known, covariant derivatives can be defined on

general tensors.
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There are actually infinite objects satisfying conditions (2.33), that is,

there are infinite connections. Take another one, Γ′µ
νλ. It is immediate that

the difference Γ′µ
νλ − Γµ

νλ is a tensor under coordinate transformations.

The covariant derivative of a function (tensor of zero degree) is the usual

derivative, which in the case is automatically covariant. Take a third order

mixed tensor T . Its covariant derivative will be given by

DµT
ν
ρσ = ∂µT

ν
ρσ + Γν

λµT
λ

ρσ − Γλ
ρµT

ν
λσ − Γλ

σµT
ν
ρλ. (2.34)

The rules to calculate, involving terms with contractions for each original

index, are fairly illustrated in this example. Notice the signs: positive for

upper indices, negative for lower indices. The metric tensor, in particular,

will have the covariant derivative

Dµgρσ = ∂µgρσ − Γλ
ρµgλσ − Γλ

σµgρλ. (2.35)

When the covariant derivative of T is zero on a domain, T is “self–parallel” parallel
transport

on the domain, or parallel–transported. An intuitive view of this notion will

be given soon (see below, Fig.2.1, page 51). It exactly translates to curved

space the idea of a straight line as a curve with maintains its direction along

all its length.

If the metric is parallel–transported, the equation above gives the metric-

ity condition

∂µgρσ = Γλ
ρµgλσ + Γλ

σµgρλ = Γσρµ + Γρσµ = 2 Γ(ρσ)µ, (2.36)

where the symbol with lowered index is defined by Γρσµ = gρλΓ
λ

σµ and the

compact notation for the symmetrized part

Γ(ρσ)µ = 1
2
{Γρσµ + Γσρµ}, (2.37)

has been introduced. The analogous notation for the antisymmetrized part

Γ[ρσ]µ = 1
2
{Γρσµ − Γσρµ} (2.38)

is also very useful.

Another convenient notational device: it it usual to indicate the common

derivative by a comma. We shall adopt also one of the two current notations
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for the covariant derivative, the semi-colon. The metricity condition, for

example, will have the expressions

gρσ;µ = gρσ,µ − 2 Γ(ρσ)µ = 0. (2.39)

The bar notation for the covariant derivative, gρσ|µ = gρσ;µ, is also found in

the literature.

2.4 The Levi–Civita Connection

There are, actually, infinite connections on a manifold, infinite objects behav-
ing according to (2.33). And, given a metric, there are infinite connections
satisfying the metricity condition. One of them, however, is special. It is
given by

◦
Γ

λ
ρσ = 1

2
gλµ{∂ρgσµ + ∂σgρµ − ∂µgρσ} . (2.40)

It is the single connection satisfying metricity and which is symmetric in
the last two indices. This symmetry has a deep meaning. The torsion of a
connection of components Γλ

ρσ is a tensor T of components

T λ
ρσ = Γλ

σρ − Γλ
ρσ = − 2 Γλ

[ρσ]. (2.41)

Connection (2.40) is called the Levi–Civita connection. Its components are
just the Christoffel symbols we have met in §1.15. It has, as said, a special
relationship to the metric and is the only metric–preserving connection with
zero torsion. Standard General Relativity works only with such connections.
We can now give a clear image of parallel-transport. If the connection is
related to a definite-positive metric — so that angles can be measured — a
parallel-transported vector keeps the angle with the curve the same all along
(Fig.2.1).

Notice that, with the notations introduced above, a general connection
will have components of the form

Γλ
ρσ = Γλ

(ρσ) − 2 T λ
ρσ. (2.42)

Connections with zero torsion, Γλ
ρσ = Γλ

(ρσ) are usually called symmetric
connections.

We have said that a curve on a manifold M is a mapping from the real
line on M . The mapping will be continuous, differentiable, etc, depending
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Figure 2.1: If the connection is related to a definite-positive metric, a parallel-

transported vector keeps the angle with the curve all along.

on the point of interest. We shall be mostly interested in curves with fixed curves
again

endpoints. A curve with initial endpoint p0 and final endpoint p1 is better
defined as a mapping from the closed interval I = [0, 1] into M :

γ : [0, 1] → M ; u → γ(u) ; γ(0) = p0 , γ(1) = p1 . (2.43)

The variable u ∈ [0, 1] is the curve parameter. A loop, or closed curve, with
p0 = p1, can be alternatively defined as a mapping of the circle S1 into M . We
shall be primarily concerned with differentiable, or smooth curves, defined
as those for which the above mapping is a differentiable function. A smooth
curve has always a tangent vector at each point. Suppose the tangent vectors
at all the points is time-like (see Eq. (2.24)). In that case the curve itself is
said to be time-like. In the same way, the curve is said to be space-like or
light-like when the tangent vectors are all respectively space-like and null.

We can now consider derivatives along a curve γ, whose points have co-
ordinates xα(u). The usual derivative along γ is defined as

d

du
=

dxα

du

∂

∂xα

The covariant derivative along γ – also called absolute derivative — is defined
by

D

Du
=

dxα

du
Dα , (2.44)

and apply to tensors just in the same way as covariant derivatives. Thus, for
example,
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DV α

Du
=

dV α

du
+ Γα

γβV γ dxβ

du
. (2.45)

Let us go back to the invariant expression of a vector field, Eq.(2.29).
It is an operator acting on the functions defined on the manifold. If the
manifold is a differentiable manifold, and {xα} is a coordinate system, the

set of operators { ∂
∂xα} is linearly independent, and ∂xβ

∂xα = δβ
α. We say then

that the set of derivative operators { ∂
∂xα} constitute a base for vector fields.

Such a base is called natural, or coordinate base, as it is closely related to the
coordinate system {xα}. Any vector field can be expressed as in Eq.(2.29),
with components V α. Under a change of coordinate system, ∂

∂xα = ∂yµ

∂xα
∂

∂yµ .

The base member eα = ∂
∂xα is in this way expressed in terms of another base,

the set { ∂
∂yµ}. The latter constitutes another coordinate base, naturally

related to the coordinate system {yµ}. The components V α transform in the
converse way, so that V is, as already said, an invariant object. Vector bases
on 4–dimensional spacetime are usually called tetrads (also vierbeine, and
four–legs).

Tetrad fields are actually much more general – they need not be related
to any coordinate system. Put hα

µ = ∂ yµ

∂xα , so that eα = ∂
∂xα = hα

µ ∂
∂yµ . Of

course, the members of the base {eα} commute with each other, [eα, eβ] = 0.
This is also the sufficient the condition for a base to be natural in some
coordinate system: if [eα, eβ] = 0, then there exists a coordinate system {xα}
such that eα = ∂

∂xα for α = 0, 1, 2, 3. These things are simpler in the so–called
dual formalism, which uses differential forms.

As said in §2.20, to every real vector space V corresponds another vector
space V∗, which is its dual. This V∗ is defined as the set of linear mappings

dual
space
again

from V into the real line R. Given a base {eα} of V , there exists always
a base {eα} of V∗ which is its dual, by which we mean that eα(eβ) = δα

β .

The base dual to { ∂
∂xα} is the set of differential forms {dxα}, each dxα being

understood as a linear mapping satisfying dxα( ∂
∂β ) = δα

β .

Take the differential of a function f : df = ∂f
∂xα dxα. Applying the above

rule, it follows that df( ∂
∂xβ ) = ∂f

∂xβ . An arbitrary differential 1–form (also
called a covector field) is written ω = ωαdxα in base {dxα}. The above dual
base will have members eα = dxα = hα

µdyµ, with hα
µ = ∂xα

∂yµ . As it always

happen that d2 ≡ 0, the condition for a covector base to be naturally related
to a coordinate system is that deα = 0. Each dxα transforms according to
dxα = ∂xα

∂yµ dyµ, and the above expression for a covector ω is invariant. We
shall later examine general tetrads in detail.
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2.5 Curvature Tensor

§ 2.55 A connection defines covariant derivatives of general tensorial ob-

jects. It goes actually a little beyond tensors. A connection Γ defines a

covariant derivative of itself. This gives, rather surprisingly, a tensor, the

Riemann curvature tensor of the connection:

Rκ
λρσ = ∂ρΓ

κ
λσ − ∂σΓκ

λρ + Γκ
νρΓ

ν
λσ − Γκ

νσΓν
λρ . (2.46)

It is important to notice the position of the indices in this definition. Au-

thors differ in that point, and these differences can lead to differences in the

signs (for example, in the scalar curvature defined below). We are using

all along notations consistent with the differential forms. There is a clear

antisymmetry in the last two indices,

Rκ
λρσ = − Rκ

λσρ .

§ 2.56 Notice that what exists is the curvature of a connection. Many con-

nections are defined on a given space, each one with its curvature. It is

common language to speak of “the curvature of space”, but this only makes

sense if a certain connection is assumed to be included in the very definition

of that space.

§ 2.57 The above formulas hold on spaces of any dimension. The meaning

of the curvature tensor can be understood from the diagram of Figure 2.2.

• First, build an infinitesimal parallelogram formed by pieces of geodesics,

indicated by dxλ, dxν , dx′λ and dx′ν .

• Take a vector field X with components Xµ at a corner point P . Parallel-

transport X along dxλ. At its extremity, X will have the value Xµ −
Γµ

νλX
νdxλ

• Parallel-transport that value along dx′ν . It will lead to a value which

we denote X ′µ.

• Back at the starting point, parallel-transport X now first along dxν

and then along dx′λ. This will lead to a field value which we denote

X ′′µ.
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• In a flat case, X ′′µ = X ′µ. On a curved case, the difference between

them is non-vanishing, and given by

δXµ = X ′′µ − X ′µ = − Rµ
ρλνX

ρ dxλdxν . (2.47)

• This is the infinitesimal case, in the limit of vanishing parallelogram

and with the value of Rµ
ρλν at the left-lower corner.

µ

µδ

µ

µ

dxλ

dxν

− Γ µ ν
ν λ dxλµ

λdx'

νdx'

Figure 2.2: The meaning of the Riemann tensor.

§ 2.58 Other tensors can be obtained from the Riemann curvature tensor

by contraction. The most important is the Ricci tensor

Rλσ = Rρ
λρσ = ∂ρΓ

ρ
λσ − ∂σΓρ

λρ + Γρ
νρΓ

ν
λσ − Γρ

νσΓν
λρ . (2.48)

This tensor is symmetric in the case of the Levi-Civita connection:
◦
Rµν =

◦
Rνµ. (2.49)

In this case, which has a special relation to the metric, the contraction with

it gives the scalar curvature
◦
R = gµν

◦
Rµν . (2.50)
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2.6 Bianchi Identities

§ 2.59 Take the definition (2.46) in the case of the Levi-Civita connection,

◦
R

κ
λρσ = ∂ρ

◦
Γ

κ
λσ − ∂σ

◦
Γ

κ
λρ +

◦
Γ

κ
νρ

◦
Γ

ν
λσ −

◦
Γ

κ
νσ

◦
Γ

ν
λρ . (2.51)

The metric can be used to lower the index κ. Calculation shows that

◦
Rκλρσ = gκµ

◦
R

µ
κλρσ = ∂ρ

◦
Γκλσ − ∂σ

◦
Γκλρ +

◦
Γκνρ

◦
Γ

ν
λσ −

◦
Γκνσ

◦
Γ

ν
λρ , (2.52)

where
◦
Γµρσ = gµν

◦
Γνρσ. The curvature of a Levi-Civita connection has some

special symmetries in the indices, which can be obtained from the detailed

expression in terms of the metric:

◦
Rκλρσ = −

◦
Rκλσρ =

◦
Rλκρσ =

◦
Rλκσρ ; (2.53)

◦
Rκλρσ =

◦
Rρσκλ . (2.54)

In consequence of these symmetries, the Ricci tensor (2.48) is essentially the

only contracted second-order tensor obtained from the Riemann tensor, and

the scalar curvature (2.50) is essentially the only scalar.

§ 2.60 A detailed calculation gives the simplest way to exhibit curvature.

Consider a vector field U with components Uα and take twice the covari-

ant derivative, getting Uα
;β;γ. Reverse then the order to obtain Uα

;γ;β and

compare. The result is

Uα
;β;γ − Uα

;γ;β = −
◦
R

α
εβγU

ε . (2.55)

Curvature turns up in the commutator of two covariant derivatives.

§ 2.61 Detailed calculations lead also to some identities. Of of them is

◦
R

κ
λρσ +

◦
R

κ
σλρ +

◦
R

κ
ρσλ = 0 . (2.56)

Another is

◦
Rκλρσ;µ +

◦
Rκλµρ;σ +

◦
Rκλσµ;ρ = 0 (2.57)
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(notice, in both cases, the cyclic rotation of the three last indices). The last

expression is called the Bianchi identity. As the metric has zero covariant

derivative, it can be inserted in this identity to contract indices in a conve-

nient way. Contracting with gκρ, it comes out

◦
Rλσ;µ −

◦
Rλµ;σ +

◦
R

ρ
λσµ;ρ = 0.

Further contraction with gλσ yields

◦
R;µ −

◦
R

σ
µ;σ −

◦
R

ρ
µ;ρ = 0,

which is the same as
◦
R;µ − 2

◦
R

σ
µ;σ = 0

or [ ◦
R

µ
ν − 1

2
δµ
ν

◦
R

]
;µ

= 0. (2.58)

This expression is the “contracted Bianchi identity”. The tensor thus “co-

variantly conserved” will have an important role. Its totally covariant form,

Gµν =
◦
Rµν − 1

2
gµν

◦
R , (2.59)

is called the Einstein tensor. Its contraction with the metric gives the scalar

curvature (up to a sign).

gµνGµν = −
◦
R . (2.60)

§ 2.62 When the Ricci tensor is related to the metric tensor by

◦
Rµν = λ gµν , (2.61)

where λ is a constant, It is usual to say that we have an Einstein space. In

that case,
◦
R = 4 λ and Gµν = − λ gµν . Spaces in which

◦
R is a constant are

said to be spaces of constant curvature. This is the standard language. We

insist that there is no such a thing as the curvature of space. Curvature is a

characteristic of a connection, and many connections are defined on a given

space.

Some formulas above hold only in a four-dimensional space. We shall in
the following give some lower-dimensional examples. It should be kept in
mind that, in a d-dimensional space, gµν gµν = d. When d = 2 for example,
gµν Gµν ≡ 0. On a two-dimensional Einstein space, Gµν ≡ 0.
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2.6.1 Examples

Calculations of the above objects will be necessary to write the dynamical
equations of General Relativity. Such calculations are rather tiresome. In
order to get a feeling, let us examine some low-dimensional examples. We
shall look at the 2-dimensional sphere and at two 2-dimensional hyperboloids.
In effect, two surfaces of revolution can be got from the hyperbola shown in
Figure 2.3: one by rotating around the vertical axis, the other by rotating
around the horizontal axis (Figure 2.4). The first will have two separate
sheets, the other only one. They are obtained from each other by exchanging
the squared vertical coordinate (below, z2) by the squared coordinates of the
resulting surface (below, x2 + y2). The spacetimes of de Sitter are higher-
dimensional versions of these hyperbolic surfaces.

Figure 2.3: Hyperbola. Two distinct surfaces of revolution can be obtained,

by rotating either around the vertical or the horizontal axis.

§ 2.63 The sphere S2 is defined as the set of points of E
3 satisfying x2 +

y2 + z2 = a2 in cartesian coordinates. This means z = ±
√

a2 − x2 − y2, and

consequently

dz = − dx x√
a2 − x2 − y2

− dy y√
a2 − x2 − y2

.
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H

H2

(1,1)
H

Figure 2.4: The two hyperbolic surfaces. The second is the complement of

the first, rotated of 90o.

The interval dl2 = dx2 + dy2 + dz2 becomes then

dl2 =
a2 dx2 + a2 dy2 − dy2 x2 + 2 dx dy x y − dx2 y2

a2 − x2 − y2

It is convenient to change to spherical coordinates

x = a sin θ cos φ ; y = a sin θ sin φ ; z = a cos θ .

The interval becomes

dl2 = a2
(
dθ2 + sin2 θ dφ2

)
.

The corresponding metric is given by

g = (gµν) =

(
a2 0

0 a2 sin2 θ

)
,

with obvious inverse. The only non-vanishing Christoffel symbols are
◦
Γ1

22 =

- sin θ cos θ and
◦
Γ2

12 =
◦
Γ2

21 = cot θ. The only non-vanishing components of
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the Riemann tensor are (up to symmetries in the indices)
◦
R1

212 = sin2 θ and
◦
R2

112 = − 1. The Ricci tensor has
◦
R11 = 1 and

◦
R22 = sin2 θ, so that it can

be represented by the matrix

(
◦
Rµν) =

(
1 0

0 sin2 θ

)
= 1

a2 (gµν) .

Consequently, the sphere is an Einstein space, with λ = 1
a2 . Finally, the

scalar curvature is
◦
R =

2

a2
.

Not surprisingly, a sphere is a space of constant curvature. As previously said,

the Einstein tensor is of scarce interest for two-dimensional spaces. Though

we shall not examine the geodesics, we note that their equations are

θ̈ = sin θ cos θ φ̇2 ; φ̈ = − 2 cot θ θ̇φ̇ ,

and that constant θ and φ are obvious particular solutions. Actually, the

solutions are the great arcs.

§ 2.64 The two-sheeted hyperboloid H2 is defined as the locus of those

points of E
3 satisfying x2 + y2 − z2 = − a2 in cartesian coordinates. The line

element has the form

dx2 + dy2 − dz2 =
a2 dx2 + a2 dy2 − dy2 x2 + 2 dx dy x y − dx2 y2

a2 − x2 − y2
.

Changing to coordinates

x = a sinh θ cos φ ; y = a sinh θ sin φ ; z = a cosh θ

the interval becomes

dl2 = a2
(
dθ2 + sinh2 θ dφ2

)
.

The metric will be

g = (gµν) =

(
a2 0

0 a2 sinh2 θ

)
.
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The only non-vanishing Christoffel symbols are
◦
Γ1

22 = - sinh θ cosh θ and
◦
Γ2

12

=
◦
Γ2

21 = coth θ. The only non-vanishing components of the Riemann tensor

are (up to symmetries in the indices)
◦
R1

212 = − sinh2 θ and
◦
R2

112 = 1. The

Ricci tensor constitutes the matrix

(
◦
Rµν) =

(
− 1 0

0 − sinh2 θ

)
.

We see that H2 is an Einstein space, with λ = − 1
a2 . The scalar curvature is

◦
R = − 2

a2
.

H2 is a space of constant, but negative, curvature. It is similar to the sphere,

but with a imaginary angle. An old name for it is “pseudo-sphere”.

§ 2.65 The one-sheeted hyperboloid H(1,1) is defined as the locus of those

points of E
3 satisfying x2 + y2 − z2 = a2 in cartesian coordinates. The line

element has the form

dz2 − dx2 − dy2 =
a2 dx2 + a2 dy2 − dy2 x2 + 2 dx dy x y − dx2 y2

a2 − x2 − y2
.

Changing to coordinates

x = a cosh θ cos φ ; y = a cosh θ sin φ ; z = a sinh θ

the interval becomes

dl2 = a2
(
− dθ2 + sinh2 θ dφ2

)
.

The metric will be

g = (gµν) =

(
− a2 0

0 a2 cosh2 θ

)
.

The only non-vanishing Christoffel symbols are
◦
Γ1

22 = sinh θ cosh θ and
◦
Γ2

12

=
◦
Γ2

21 = tanh θ. The only non-vanishing components of the Riemann tensor

are (up to symmetries in the indices)
◦
R1

212 = cosh2 θ and
◦
R2

112 = 1. The

Ricci tensor constitutes the matrix

(
◦
Rµν) =

(
− 1 0

0 cosh2 θ

)
.

60



We see that H(1,1) is an Einstein space, with λ = 1
a2 . The scalar curvature is

◦
R =

2

a2
.

H(1,1) is a space of constant positive curvature, like the sphere.

§ 2.66 The rotating disk We shall now consider the rotating disk of §1.13

from two points of view: in (2 + 1) dimensions (two for the rotation plane,

one for time); and only the 3-dimensional space section. Curiously, the two

cases will have quite different results: the (2, 1) case gives zero curvature,

while the 3-dimensional space is curved.

Take first the (2, 1) case, with coordinates (ct, R, θ). The metric will be

g = (gµν) =


 1 − ω2R2

c2
0 − ωR2

c

0 − 1 0

− ωR2

c
0 − R2


 .

The only non-vanishing Christoffel symbols are
◦
Γ2

11 = − ω2R
c2

,
◦
Γ2

13 =
◦
Γ2

31

= − ωR
c

,
◦
Γ2

33 = − R,
◦
Γ3

12 =
◦
Γ3

21 = ω
cR

, and
◦
Γ3

23 =
◦
Γ3

32 = 1
R
. All the com-

ponents of the Riemman tensor vanish, so that the 3-dimensional spacetime

is flat.

Take now the 3-dimensional space, with coordinates (x, y, z). The metric

will be

g = (gµν) =


 1 + fy2 −fxy 0

−fxy 1 + fx2 0

0 0 1


 ,

with f = ω2c2

c2−ω2(x2+y2)2
. All the Christoffel symbols of type

◦
Γ3

ij are zero, but

the other have some rather lengthy expressions. The same is true of the Ricci

tensor. We shall only quote the scalar curvature, which is (with r2 = x2 +y2)

R =
2 c4 r4 ω6 − 2 c8 ω2 (3 + 2 r2 ω2) + c6 (4 r2 ω4 − 2 r4 ω6)

(c2 − r2 ω2)2 (r2 ω2 − c2 (1 + r2 ω2))2 .

This means that the space is curved. A simpler expression turns up for the

particular values ω = 1, c = 1:

R = − 6

1 − r2
.
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We see that there is a singularity when r → ωc. Exactly the same results

come out if we consider the pure 2-dimensional case, the plane rotating disk.

This corresponds to dropping the last column and row of the metric above.

§ 2.67 In all these examples,

1. a set point S is first defined by a constraint on the points of an ambient

space E;

2. the metric is defined by the restriction, on the subset, of the metric of

the ambient space;

3. such a metric is said to be induced by the imbedding of S in E.
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Chapter 3

Dynamics

3.1 Geodesics

§ 3.1 Curves defined on a manifold provide tests for many of its properties.

In Physics, they do still more: any observer will be ultimately represented

by some special curve on spacetime. We have obtained the geodesic equation

before. We had then used implicitly the assumption that ds �= 0. The ap-

proach which follows∗ though more involved, has the advantage of including

the null geodesics, for which ds = 0.

Our aim is to obtain certain priviledged curves as extremals of certain

functionals, or functions defined on the space of curves. Such functional

involve integrals along each curve, like

F [γ] =

∫
γ

f .

A simple stratagem allows to manipulate such functionals as if they were

functions. To do it, it is necessary to give a label to each curve, so that

varying the curve becomes a simple change of label. This can be done by

considering, beyond the initial family of possible, curves, another family of

“transversal” curves.

§ 3.2 We shall be interested in families of curves, like the curves α, β and

γ in Figure 3.1. We have indicated by a0 and a1 the initial and the final congru−
ences

∗ See J. L. Synge, Relativity: The general theory, North–Holland, Amsterdam, 1960.
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α

σγ

ρ
β

u

v

u1

u0

a 1

b 1

c 1

a 0

b 0

c 0

Figure 3.1: The family of curves α, β, γ is parametrized by u. The crossed

family of curves ρ, σ is parametrized by v. The second family is a “variation”

of the first.

endpoints of the piece of α which will be of interest, and analogously for the

other curves. The curve parameter u is indicated as “going along” them,

with u0 and u1 the initial and final endpoints. We say that the curves form a

congruence. The variation leading from α to β and to γ can be represented

by another parameter v. It is useful to consider v as the parameter related to

another set of curves, such that each curve of the second congruence intersects

every curve of the first, and vice versa. We have drawn only ρ and σ, which

go through the endpoints of the first family of curves. The points on all the

curves constitute a double continuum, a two–parameter domain which we

shall indicate by γ(u, v). It will have coordinates xα(u, v) = γα(u, v). For a

fixed value of v, γv(u) = γ(u, v = constant) will describe a curve of the first

family. For a fixed value of u, γu(v) = γ(u= constant, v) will describe a curve

of the second family. The second family is, by the way, called a “variation”

of any member of the first family. There will be vectors along both families,

such as

Uα =
dxα

du
and V α =

dxα

dv
.
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If the connection is symmetric, the crossed absolute derivatives coincide:

DV α

Du
=

DUα

Dv
. (3.1)

Let us first fix v at some value, thereby choosing a fixed curve of the first

family and consider, along that curve, the function(al)

I[v] = 1
2

(u1 − u0)
∫ u1

u0
gαβ

dxα

du
dxβ

du
du = 1

2
(u1 − u0)

∫ u1

u0
gαβ Uα Uβ du .

(3.2)

On the two-parameter domain, variations of that curve become simple deriva-

tives with respect to v. By conveniently adding antisymmetric and symmetric

pieces, we have the series of steps

d

dv
I[v] = (u1 − u0)

∫ u1

u0

gαβUα D

Dv
Uβ du = (u1 − u0)

∫ u1

u0

gαβUα DV β

Du
du

= (u1 − u0)

∫ u1

u0

d

du

[
gαβUα V β

]
du − (u1 − u0)

∫ u1

u0

gαβ V β D

Du
Uαdu

= (u1 − u0)
[
gαβUα V β

]u1

u0
du − (u1 − u0)

∫ u1

u0

gαβ V β D

Du
Uαdu (3.3)

We are interested in curves with the same endpoints, and shall now collapse

the parameter v. In Figure 3.1, a0 = b0 = c0 and a1 = b1 = c1. This

corresponds to putting V β = 0 at the endpoints. The first contribution in

the right–hand side above vanishes and

d

dv
I[v] = −(u1 − u0)

∫ u1

u0

gαβ V β D

Du
Uαdu . (3.4)

We now call geodesics the curves with fixed endpoints for which I is station-

ary. As in the last integrand V β is arbitrary except at the endpoints, such

curves must satisfy

D

Du
Uα =

dUα

du
+

◦
Γ

α
γβUγUβ = 0 , (3.5)

which is the same as geodesic
equation

d2xα

du2
+

◦
Γ

α
γβ

dxβ

du

dxγ

du
= 0. (3.6)
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This is the geodesic equation we have met before. It says that the vector

Uα = dxα

du
has vanishing absolute derivative along the curve. This means

that it is parallel-transported along the curve. The only direction that can

be attributed to a curve is, at each point, that of its “velocity” Uα. This

leads to a much better name for such a curve: self-parallel curve. It keeps

the same direction all along. Geodesics (solutions of the geodesic equation)

play on curved spaces the role the straight lines have on flat spaces.

Comment 3.1 Why is the name “self-parallel” better ? There are at least two reasons:

1. the word “geodesic” has a very strong metric conotation; its original meaning was
that of a shortest length curve; but length, real length, only is defined by a positive-
definite metric, not our case;

2. the concept has actually no relation to metric at all; such curves can be defined for
any connection; connection is a concept quite independent of metric, and defines
parallelism; for general connections, only “self-parallel” makes sense.

§ 3.3 The geodesic equation has the first integral

gαβ Uα Uβ = C. (3.7)

This is to say that, along the curve,

d

du

[
gαβ Uα Uβ

]
= 0.

Comment 3.2 Prove it for the connection given by (2.40).

§ 3.4 Comparison with the interval expression (2.25) shows that

ds = C1/2du.

Eq.(3.6) is invariant under parameter changes of type

u → u′ = au + b . (3.8)

The constant C can, consequently, be rescaled to have only the values 1 and

0. This means that, unless C = 0, the interval parameter s can be used as

the curve parameter. That parameter is the proper time, and we recall that
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Uα = dxα

ds
is the the four–velocity. The choice of C = 1 allows contact to be

made with Special Relativity, as (3.7) becomes

U2 = U · U = UαUα = gαβUα Uβ = 1. (3.9)

The case C = 0 includes trajectories of particles with vanishing masses, in

special light–rays. As long as we keep in mind this exception, we can rewrite

the geodesic equation in the forms

D

Ds
Uα =

dUα

ds
+ Γα

βγU
βUγ =

d2xα

ds2
+ Γα

βγ
dxβ

ds

dxγ

ds
= 0. (3.10)

Once things have been interpreted in this way, we say that the velocity

is covariantly derived along γ. This is supported by Eq.(2.44), which now

shows the absolute derivative as the covariant derivative projected, at each

point, on the velocity.

§ 3.5 In the case of massive particles, we can use the freedom allowed by

(3.8) to choose another parameter. Introduce s by

u − u0 = (u1 − u0)
1/2s/L .

Then, comparison with(2.26) shows that I(v) = 1
2
L2. This leads to the

variational principle

δL = δ

∫
ds = 0 , (3.11)

which we have found before.

§ 3.6 If we look back at what has been done in §1.15, we see that we have

there got (3.10) from (3.11). A massive particle, without additional structure

(for instance, supposing that the effect of its spin is negligible, or zero) will

follow the geodesic equation. That is actually the standard approach. It is

enough to replace, in all the discussion, the expression “in the presence of a

metric” by the expression “in the presence of a gravitational field”. It holds,

wee see now, for massive particles, for which ds �= 0.
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§ 3.7 Eqs.(3.6) and (3.10) are second–order ordinary differential equations.

Existence and unicity theorems of the theory of differential equations state

that, given starting coordinates xi and “velocities” dxi

du
at a point P , there

will be a curve γ(u), with −ε < u < ε for some ε > 0, which goes through P

(γ(P ) = 0) and which is unique.

§ 3.8 The expression

Aα =
dUα

ds
+ Γα

βγU
βUγ (3.12)

is the covariant acceleration, the only to have a meaning in an arbitrary

coordinate system. The existence of the above first integral is equivalent to

U · A = gαβ UαAβ = 0 . (3.13)

As in Special Relativity the acceleration is, at each point of γ, orthogonal

to the velocity. As the velocity is parallel (or tangent) to γ at each point,

we can say that the acceleration is orthogonal to γ. A curve is self–parallel

when its acceleration vanishes.

§ 3.9 We have above supposed a Levi–Civita connection. All the termi-

nology comes from the first historical case, the Levi–Civita connection of a

strictly Riemannian metric. We have said that any vector which is parallel–

transported along a curve keeps the same angle with respect to the velocity

all along it. The concept of self–parallel curve keeps its meaning for a gen-

eral linear connection. A self–parallel curve is in that case defined as a curve

satisfying (3.10).

§ 3.10 Let us go back to the first integral given in Eq.(3.7). It has a very

deep meaning. As the momentum of a particle of mass m is P µ = mc Uµ,

we rewrite it as

m2c2 gµν Uµ U ν = gµν P µ P ν = m2c2 C . (3.14)

Write now

mc gµν U ν = ∂µ S. (3.15)
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This means dS = mc gµν U νdxµ. This gradient form, applied to the tangent

vector U = Uλ ∂
∂xλ , gives dS(U) = mc C. That reveals the meaning of S for

the present case of a massive particle: with the choice C = 1 announced in §
3.4, it is the action written in terms of the sole coordinates along the curve,

as it appears in Hamilton-Jacobi theory:

Pµ = ∂µ S . (3.16)

The geodesic curve is, at each point, orthogonal to the surface S = con-

stant passing through that point. In effect, dS = mc gµν U νdxµ is (up to

the sign) just the action we have used before, but here along the curve. The

expression
Hamilton
Jacobi

equation

gµν ∂µS ∂νS = m2c2 (3.17)

is the relativistic Hamilton-Jacobi equation for the free particle. It is possible

to recover the geodesic equation from it. Let us see how.

Consider both sides of the expression

d

du
[gµν U ν ] =

d

du
Uµ = Uρ∂ρUµ .

The left-hand side (LHS) is

d

du
(gµν U ν) = gµν

d

du
Uν + U ν

(
d

du
gµν

)
= gµν

d

du
Uν + U νUρ∂ρgµν .

The last piece is symmetric in the indices ν and ρ, so that we can write

LHS =
d

du
(gµν U ν) = gµν

d

du
U ν + 1

2
U νUρ (∂ρgµν + ∂νgµρ) .

Now to the right-hand side:

RHS = Uρ∂ρUµ = Uρ∂ρ∂µS = Uρ∂µ∂ρS = Uρ∂µUρ = − Uρ∂µU
ρ ,

using ∂µ [gρνU
νUρ] = ∂µ [constant] = 0 in the last step. Notice that here we

have the only contribution of Hamilton-Jacobi theory: we have used the fact

(3.16) that the momentum is a derivative to justify the exchange ∂ρUµ =

∂µUρ. Now, ∂µ [gρνU
νUρ] = 0 is also

0 = (∂µgρν) U νUρ + 2 gρνU
ν∂µU

ρ ∴ Uρ∂µU
ρ = − 1

2
(∂µgρν) U νUρ ,
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so that

RHS = − Uρ∂µU
ρ = 1

2
(∂µgρν) U νUρ .

Now, LHS = RHS gives

gµν
d

du
Uν + 1

2
(∂ρgµν + ∂νgµρ − ∂µgρν) UρU ν = 0 ,

or
d

du
Uλ + 1

2
gλµ [∂τgµσ + ∂σgµτ − ∂µgτσ] UσU τ = 0 ,

the announced result. All this can be repeated step by step, but starting

from eikonal
equation

gµν ∂µS ∂νS = 0 . (3.18)

This equation has a different meaning: it is the eikonal equation, with S now
in the role of the eikonal. The geodesic, in this case, is the light-ray equation.

The Hamilton-Jacobi and the eikonal equations allow thus a unified view
of particle trajectories and light rays. The geodesic equation comes

• from the Hamilton-Jacobi equation, as the equation of motion of a
massive particle;

• from the eikonal equation, as the trajectory of a light ray.

§ 3.11 As we have said, curves are of fundamental importance. They not

only allow testing many properties of a given space. In spacetime, every

(ideal) observer is ultimately a time–like curve.
observer

The nub of the equivalence principle is the concept of observer:

An observer is a timelike curve on spacetime, a world–line.

Such a curve represents a point-like object in 3-space, evolving in the time-

like 4-th “direction”. An object extended in 3-space would be necessarily

represented by a bunch of world–lines, one for each one of its points. This

mesh of curves will be necessary if, for example, the observer wishes to do

some experiment. For the time being, let us take the simplifying assumption

above, and consider only one world–line. This is an ideal, point-like observer.

If free from external forces, this line will be a geodesic.
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And here comes the crucial point. Given a geodesic γ going through a

point P (γ(0) = P ), there is always a very special system of coordinates

(Riemannian normal coordinates) in a neighborhood U of P in which the

components of the Levi-Civita connection vanish at P . The geodesic is, in

this system, a straight line: ya = cas. This means that, as long as γ traverses

U , the observer will not feel gravitation: the geodesic equation reduces to the

forceless equation dua

ds
= d2ya

ds2 = 0. This is an inertial observer in the absence

of external forces. If Γ = 0, covariant derivatives reduce to usual derivatives.

If external forces are present, they will have the same expressions they have

in Special Relativity. Thus, the inertial observer will see the force equation
dua

ds
= F a of Special Relativity (see Section 3.7).

§ 3.12 There is actually more. Given any curve γ, it is possible to find a

local frame in which the components of the Levi-Civita connection vanish

along γ. That observer would not feel the presence of gravitation.

§ 3.13 How point–like is a real observer ? We are used to say that an

observer can always know whether he/she is accelerated or not, by making

experiments with accelerometers and gyroscopes. The point is that all such

apparatuses are extended objects. We shall see later that a gravitational

field is actually represented by curvature and that two geodesics are enough

to denounce its presence (§ 3.46).

§ 3.14 As repeatedly said, the principle of equivalence is a heuristic guiding

precept. It states that, as long as the dimensions involved in the definition of

an observer are negligible, an observer can choose his/hers coordinates so that

everything (s)he experiences is described by the laws of Special Relativity.

3.2 The Minimal Coupling Prescription

§ 3.15 The equivalence principle has been used up to now in a one-way trip,

from General Relativity to Special Relativity. Some frame exists in which the

connection vanishes, so that covariant derivatives reduce to simple deriva-

tives. This can be used in the opposite sense. Given a special-relativistic

expression, how to get its version in the presence of a gravitational field ?

71



The answer is now very simple: replace common derivatives on any tensorial

object by covariant derivatives. Symbolically, this is represented by a rule,

∂µ ⇒ ∂µ + Γµ. (3.19)

This comma ⇒ semi-colon rule is the minimal coupling prescription. To this rules

must be added the already discussed passage from flat to curved metric,

ηab ⇒ gµν . (3.20)

Once acccepted, these two rules allow to translate special-relativistic laws,

or equations, into expressions which hold in the presence of a gravitational

field.

§ 3.16 Conservation of energy is one of the most important laws of

Physics. Its special-relativistic version states that the energy-momentum

tensor has vanishing divergence:

∂νT
µν = T µν

,ν = 0. (3.21)

In the presence of a gravitational field, this becomes

∂νT
µν + Γµ

ρνT
ρν + Γν

ρνT
µρ = 0, (3.22)

being understood that every other derivative and any metric factor appear-

ing in T µν are equally replaced according to (3.19) and (3.20). Notice that,

because of the metricity condition (2.39), the metric can be inserted in or

extracted from covariant derivatives at will. Equation (3.22) is usually rep-

resented in the comma-notation, as

T µν
;ν = 0 . (3.23)

§ 3.17 An exercise: A dust cloud (or incoherent fluid) is a fluid formed by

massive particles ignoring each other. It is a gas without pressure — only dust
cloud

energy is present. Special Relativity gives its energy–momentum the form

T µν = ε UµU ν , (3.24)

where ε is the energy density. The 4–vector U is a field representing the

velocities of the fluid stream–lines.
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Comment 3.3 The following results are immediate:

TµνUν = ε Uµ ; TµνUνUµ = ε ; gµνTµν = ε .

The covariant divergence of T µν must vanish:

DνT
µν = Uµ Dν(ε U ν) + ε U νDνU

µ = Uµ Dν(ε U ν) + ε
D

Ds
Uµ = 0.

(3.25)

Contract this expression with Uµ: as UµU
µ = 1,

Dν(εU
ν) + ε Uµ

D

Ds
Uµ = 0.

As the metric can be inserted into or extracted from the covatiant derivative

without any modification (because it is preserved by the Levi-Civita con-

nection), it follows that Uµ
D
Ds

Uµ = 0. We get in consequence a continuity

equation, or energy flux “conservation”:

Dν(εU
ν) = 0.

Taken into (3.25), this leads to the geodesic equation for the stream–lines:

D

Ds
Uµ = 0 .

§ 3.18 The covariant derivative Dµφ of a scalar field φ is just the usual

derivative, Dµφ = ∂µφ. But the derivative ∂µφ is by itself a vector. The

Laplacian operator, or (its usual name in 4 dimensions) D’Alembertian, is

Dµ∂
µφ = ∂µ∂

µφ + Γµ
ρµ∂

ρφ. The contracted form Γµ
ρµ of the Levi-Civita

connection has a special expression in terms of the metric. From Eq. (2.40),

Γµ
ρµ = 1

2
gµν{∂ρgµν + ∂µgρν − ∂νgµρ} = 1

2
gµν∂ρgµν = 1

2
tr[g−1∂ρg],

where the matrix g = (gµν) and its inverse have been introduced. This is

Γµ
ρµ = 1

2
tr[∂ρ lng] = 1

2
∂ρ tr[lng].

For any matrix M, tr[lnM] = ln detM, so that

Γµ
ρµ = 1

2
∂ρ ln[detg] = ∂ρ ln[−g]1/2 = 1√−g

∂ρ

√−g, (3.26)
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where g = | detg|. The D’Alembertian becomes

φ = ∂µ∂
µφ +

1√−g
[∂µ

√−g]∂µ φ,

or
Laplace
Beltrami
operator

φ =
1√−g

∂µ [
√−g ∂µ φ]. (3.27)

Laplaceans on curved spaces are known since long, and are called Laplace-

Beltrami operators.

§ 3.19 Another example: the electromagnetic field. To begin with, we

notice that, due to (3.18) and using (3.26),

∂µA
µ ⇒ Aµ

;µ =
1√−g

∂µ [
√−g Aµ] . (3.28)

This is, by the way, the general form of the covariant divergence of a four- covariant
divergence

vector. The field strength Fµν is antisymmetric and, due to the symmetry of

the Christofell symbols, remain the same:

Fµν = ∂µAν − ∂νAµ + [
◦
Γ

ρ
µν −

◦
Γ

ρ
νµ]Aρ = ∂µAν − ∂νAµ.

In consequence, only the metric changes in the Lagrangean Lem = −1
4
FabF

ab

= −1
4
ηacηbdFabFcd of Special Relativity: it becomes

Lem = −1
4
gµρηνσFµνFρσ. (3.29)

Maxwell’s equations, which in Special Relativity are written

∂λFµν + ∂νFλµ + ∂µFνλ = Fµν,λ + Fλµ,ν + Fνλ,µ = 0 (3.30)

∂µF
µν = F µν

,µ = jν , (3.31)

take the form

Fµν;λ + Fλµ;ν + Fνλ;µ = 0 (3.32)

F µν
;µ = jν . (3.33)
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The latter deserves to be seen in some detail. Let us first examine the

derivative

F µν
;µ = ∂µF

µν +
◦
Γ

µ
ρµF

ρν +
◦
Γ

ν
ρµF

µρ.

The last term vanishes, again because
◦
Γν

ρµ is symmetric. If another con-

nection were at work, a coupling with torsion would turn up: the last term

would be (− 1
2

T ν
ρµF

µρ). The first two terms give Maxwell’s equations in

the form

F µν
;µ =

1√−g
∂µ [

√−g F µν ] = jν . (3.34)

The energy-momentum tensor of the electromagnetic field, which is

Tab = −ηcdFacFbd + 1
4
ηabη

ecηfdFefFcd

in Special Relativity, becomes

Tµν = −gρσFµρFνσ + 1
4
gµνg

κρgλσFκλFρσ . (3.35)

Comment 3.4 Notice
gµνTµν = 0.

§ 3.20 A fluid of pressure p and energy density ε has an energy-momentum

tensor generalizing (3.24):

T ab = (p + ε) UaU b − pηab.

This changes in a subtle way. Its form is quite analogous, energy
momentum

T µν = (p + ε) UµU ν − pgµν , (3.36)

but the 4-velocities are Uµ = dxµ

ds
, with ds the modified interval.

Comment 3.5 With respect to the dust cloud, only the trace changes:

TµνUν = ε Uµ ; TµνUνUµ = ε ; T = gµνTµν = ε − 3 p .

If the gas is ultrarelativistic, the equation of state is ε = 3 p and, consequently, T = 0, as
for the electromagnetic field.
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§ 3.21 We have seen in § 3.17 that the streamlines in a dust cloud are

geodesics. The energy-momentum density (3.36) differs from that of dust by

the presence of pressure. We can repeat the procedure of that paragraph in

order to examine its effect. Here, T µν
;ν = 0 leads to

T µν
;ν = Uµ D

Ds
(p + ε) + (p + ε)

DUµ

Ds
+ (p + ε)UµU ν

;ν − ∂µp = 0.

Contraction with Uµ leads now to

(εU ν);ν = − p U ν
;ν ,

so that the energy flux is no more conserved. Taking this expression back

into that of T µν
;ν = 0 implies

(p + ε)
DUµ

Ds
= ∂µp − Uµ Dp

Ds
= (gµν − UµU ν)∂νp . (3.37)

More will be said on this force equation in § 3.50.

§ 3.22 Suppose that T µν is symmetric, as in the examples above. Define the

quantity

Lµνλ = xλT µν − xνT µλ.

It is immediate that

Lµνλ
;µ = 0

and

Uµ Lµνλ = ε(xλU ν − xνUλ).

3.3 Einstein’s Field Equations

§ 3.23 The Einstein tensor (2.59) is a purely geometrical second-order tensor

which has vanishing covariant derivative. It is actually possible to prove that

it is the only one. The energy-momentum tensor is a physical object with the

same property. The next stroke of genius comes here. Einstein was convinced

that some physical chacteristic of the sources of a gravitational field should

engender the deformation in spacetime, that is, in its geometry. He looked

for a dynamical equation which gave, in the non-relativistic, classical limit,
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the newtonian theory. This means that he had to generalize the Poisson

equation

∆V = 4πGρ (3.38)

within riemannian geometry. The Gµν has second derivatives of the metric,

and the energy-momentum tensor contains, as one of its components, the

energy density.

He took then the bold step of equating them to each other, obtaining

what we know nowadays to be the simplest possible generalization of the

Poisson equation in a riemannian context: field
equation

Rµν − 1
2

gµνR = 8πG
c4

Tµν . (3.39)

This is the Einstein equation, which fixes the dynamics of a gravitational

field. The constant in the right-hand side was at first unknown, but he fixed

it when he obtained, in the due limit, the Poisson equation of the newtonian

theory (as will be seen in §3.31 below).

Comment 3.6 A text on gravitation has always a place for the value of G. At present
time, the best experimental value for the gravitational constant is

G = 6.67390 × 10−11m3/kg/sec2.

The uncertainty is 0.0014%. From that Earth’s and Sun’s masses can be obtained. The
values are M⊕ = 5.97223(±0.00008)×1024kg and M� = 1.98843(±0.00003)×1030kg. The
apparatus used (by Jens H. Gundlach et al, University of Washington, 2000) is a moderm
version of the Cavendish torsion balance.

§ 3.24 Contracting (3.39) with gµν , we find

R = − 8πG
c4

T , (3.40)

where T = gµνTµν . This result can be inserted back into the Einstein equa-

tion, to give it the form

Rµν = 8πG
c4

[
Tµν − 1

2
gµνT

]
. (3.41)

§ 3.25 Consider the sourceless case, in which Tµν = 0. It follows from

the above equation that Rµν = 0 and, therefore, that R = 0. Notice that
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this does not imply Rρ
σµν = 0. The Riemann tensor can be nonvanishing

even in the absence of source. Einstein’s equations are non-linear and, in

consequence, the gravitational field can engender itself. Absence of gravita-

tion is signalled by Rρ
σµν = 0, which means a flat spacetime. This case —

Minkowski spacetime — is a particular solution of the sourceless equations.

Beautiful examples of solutions without any source at all are the de Sitter

spaces (see subsection 4.3.2 below).

§ 3.26 It is usual to introduce test particles, and test fields, to probe a

gravitational field, as we have repeatedly done when discussing geodesics.

They are meant to be just that, test objects. They are supposed to have no

influence on the gravitational field, which they see as a background. They

do not contribute to the source.

§ 3.27 In reality, the Einstein tensor (2.59) is not the most general parallel-

transported purely geometrical second-order tensor which has vanishing co-

variant derivative. The metric has the same property. Consequently, it is in

principle possible to add a term Λgµν to Gµν , with Λ a constant. Equation

(3.39) becomes

Rµν − (1
2

R + Λ)gµν = 8πG
c4

Tµν . (3.42)

From the point of view of covariantly preserved objects, this equation is as

valid as (3.39). In his first trial to apply his theory to cosmology, Einstein

looked for a static solution. He found it, but it was unstable. He then

added the term Λgµν to make it stable, and gave to Λ the name cosmological

constant. Later, when evidence for an expanding universe became clear, he

called this “the biggest blunder in his life”, and dropped the term. This

is the same as putting Λ = 0. It was not a blunder: recent cosmological

evidence claims for Λ �= 0. Equation (3.42) is the Einstein’s equation with a

cosmological term. With this extra term, Eq,(3.41) becomes

Rµν =
8πG

c4

[
Tµν − 1

2
gµνT

]
− Λgµν . (3.43)
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3.4 Action of the Gravitational Field

§ 3.28 Einstein’s equations can be derived from an action functional, the

Hilbert-Einstein action Hilbert
action

S[g] =

∫ √−g R d4x . (3.44)

It is convenient to separate the metric as soon as possible, as in R = gµνRµν .

Variations in the integration measure, which is metric-dependent, are con-

centrated in the Jacobian
√−g. Taking variations with respect to the metric,

δS[g]

δgρσ
=

∫
δ
√−g

δgρσ
gµνRµν d4x+

∫ √−g
δgµν

δgρσ
Rµν d4x+

∫ √−g gµν δRµν

δgρσ
d4x.

The first term is

δ
√−g
δgρσ =

1

2
√−g

δ(−g)

δgρσ
=

1

2
√−g

δ(exp[tr lng])

δgρσ
=

1

2
√−g

exp[tr lng]
δtr lng

δgρσ

=
1

2
√−g

(−g) tr
δ lng

δgρσ
=

1

2
√−g

(−g) tr

[
g−1 δg

δgρσ

]

=
1

2
√−g

(−g)

[
gµν δgµν

δgρσ

]
= − 1

2
√−g

(−g)

[
gµν

δgµν

δgρσ

]
= − 1

2

√−g gρσ.

The last term can be shown to produce a total divergence and can be dropped.

The first two terms give

δS[g]

δgρσ
=

√−g
[
Rρσ − 1

2
gρσ R

]
.

This is the left-hand side of (3.39). In the absence of sources, Einstein’s

equation reduces to

√−g
[
Rµν − 1

2
gµνR

]
= 0. (3.45)

§ 3.29 A few comments:

1. variations have been taken with respect to the metric, which is the

fundamental field
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2. it is perhaps strange that the variation of Rµν , which encapsulates the

gravitational field-strength, gives no contribution

3. If a source is present, with Lagragian density L and action

Ssource =

∫ √−g L d4x, (3.46)

its contribution to the field equation, that is, its modified energy-

momentum tensor density, will be given by

− √−g Tρσ =
δ

δgρσ
Ssource =

∫
δ

δgρσ

[√−g L
]

d4x

=

∫ √−g
δL
δgρσ

d4x +

∫
L δ

√−g

δgρσ
d4x =

√−g

[
δL
δgρσ

− 1
2
gρσL

]
.

Consequently,

Tρσ = − δL
δgρσ

+ 1
2
gρσL . (3.47)

4. Einstein’s equation (3.42) with a cosmological term comes, in and anal-

ogous way, from the action

S[g] =

∫ √−g (R + 2Λ) d4x. (3.48)

§ 3.30 We have used in §1.15 a dimensional argument to write the action of dimensions

a test particle and of its coupling with an electromagnetic potential. Näıve

dimensional analysis can be very useful in field theories. Not only do they

help keeping trace of factors in calculations, but also lead to deep questions in

the problem of quantization. Actually, näıve dimensional considerations are

enough to exhibit a fundamental difference between gravitation and all the

other basic interactions. Indeed, all the coupling constants are dimensionless

quantities (think of the electric charge e), except that of gravitation. This

is related to the Lagrangean density
√−gR, whose dimension differs from

those of the other theories. Let us be näıve for a while, and consider usual

mechanical dimensions in terms of mass (M), length (L) and time (T). The

dimension of a velocity will be represented as [v] = [c] = [LT−1]; that of a

force as [F ] = [MLT−2]; an energy will have [E] = [FL] = [ML2T−2]; a
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pressure, [p] = [FL−2] = [EL−3]; an action, [S] = [�] = [ET ] = ML2T−1.

Metric is dimensionless, so that [ds] = [dx] = [L]. The fact that a quantity

is dimensionless will be represented as in [e] = [g] = [0].

Field theory makes use of natural units (seemingly forbidden by interna-

tional law), in which � = 1 and c = 1. In that scheme, which greatly simplify

discussions, actions and velocities are dimensionless. In consequence, [L] =

[T ] = [M−1] and only one mechanical dimension remains. Usually, the mass

M is taken as the standard reference. A new set turns out. As examples,

[F ] = [2], [E] = [M ], [ds] = [M−1]. We say then that force has “numeric”

dimension zero, energy has dimension one, length has dimension minus one.

quantity usual dimension natural dimension numeric

mass M M + 1

length L M−1 - 1

time T M−1 - 1

velocity LT−1 M0 0

acceleration LT−2 M + 1

force MLT−2 M2 + 2

Newton’s G M−1L3T−2 M−2 - 2

energy ML2T−2 M1 + 1

action ML2T−1 M0 0

pressure ML−1T−2 M−2 - 2

gµν M0L0T 0 M0 0

ds L M−1 - 1

charge e M0L0T 0 M0 0

Aµ ML2T−2 M + 1

Fµν , E, B MLT−2 M2 + 2

Tµν ML−1T−2 M−2 - 2∫ √−gF µνFµνd
4x M0L0T 0 M0 0

Γλ
µν L−1 M + 1

Rλ
µνρ, R L−2 M2 + 2∫ √−g R d4x L2 M−2 - 2
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Fields representing elementary particles have, in general, natural dimen-

sion + 1. Notice that
∫ √−g R d4x has not the dimension of an action.

Actually, in order to give coherent results, it must be multiplied by a con-

stant of dimension MT−1, actually − c3

16πG
.

3.5 Non-Relativistic Limit

§ 3.31 A massive particle follows the geodesic equation (3.10),

dUα

ds
+ Γα

βγU
βUγ =

d2xα

ds2
+ Γα

βγ
dxβ

ds

dxγ

ds
= 0, (3.49)

which comes from the first term in action (1.7),

S = − mc

∫
ds . (3.50)

To compare with the non-relativistic case, we recall that the motion of a

particle in a gravitational field is in that case described by the Lagrangian

L = − mc2 +
mv2

2
− mV .

This means the action

S = −
∫

mc

[
c − v2

2c
+

V

c

]
dt . (3.51)

Comparison with (3.50) shows that necessarily

ds =

[
c − v2

2c
+

V

c

]
dt

which, neglecting all the smaller terms, gives

ds2 =

[
1 +

2V

c2

]
c2dt2 − dx2 . (3.52)

We see that, in the non-relativistic limit,
non−

retativistic
metric

g11 = g22 = g33 = −1 ; g00 = 1 +
2V

c2
. (3.53)
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According to Special Relativity, the energy-momentum density tensor (3.36)

reduces to the sole component

T00 = ρc2, (3.54)

where ρ is the mass density. The trace has the same value, T = ρc2. If we

use Eq.(3.41), we have

Rµν =
8πG

c2
ρ

[
δ0µδν0 − 1

2
gµν

]
.

In particular,

R00 =
4πG

c2
ρ . (3.55)

The other cases are Ri�=j = 0 and Rii = 4πGρV/c4 ≈= in our approximation.

We can then proceed to a careful calculation of R00 as given by (2.48), using

(3.53) and (2.40). It turns out that the terms in Γ Γ are of at least second

order in v/c. The derivatives with respect to x0 = ct are of lower order if

compared with the derivatives with respect to the space coordinates xk, due

to the presence of the factors 1/c. What remains is R00 = ∂Γk
00

∂xk . It is also

found that Γk
00 ≈ − 1

2
gkj ∂g00

∂xj . But this is = 1
c2

∂V
∂xk . Thus,

R00 =
1

c2

∂

∂xk

∂V

∂xk
=

1

c2
∆V . (3.56)

Comparison with (3.55) leads then to Poisson
recovered

∆V = 4πG ρ . (3.57)

This shows how Einstein’s equation (3.39) reduces to the Poisson equation

(3.38) in the non-relativistic limit. By the way, the above result confirms the

value of the constant introduced in (3.39).

§ 3.32 Notice that the non-relativistic limit corresponds to a weak gravita-

tional field. A strong field would accelerate the particles so that soon the

small-velocity approximation would fail.

§ 3.33 If the cosmological constant Λ is nonvanishing, then we should use

(3.43) to obtain Rµν , instead of Eq.(3.41) as above. An extra term Λg00
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appears in R00. The Poisson equation becomes ∆V = 4πG ρ − Λc2. To

examine the effect of this term in the non-relativistic limit, we can separate

the potential in two pieces, V = V1 + V2, with ∆V1 = 4πG ρ. Then, ∆V2 =

−Λc2 has for solution V2 = −Λc2r2/6, leading to a force FΛ(r) = Λc2r/3.

As Λ > 0 by present-day evidence, this harmonic oscillator-type force is

repulsive. This is a universal effect: the cosmological constant term produces

repulsion between any two bodies.

§ 3.34 Let us now examine what happens to the geodesic equation. First of

all, the four-velocity U has the components (γ, γv/c) in Special Relativity,

with γ = 1/
√

1 − v2/c2. In the non-relativistic limit,

γ ≈ 1 + 1
2

v2

c2
;

U ≈ (1 + 1
2

v2

c2
,v/c) .

Concerning the interval ds, all 3-space distances |dx| are negligible if com-

pared with cdt, so that ds2 ≈ c2dt2. Consequently,

dU

ds
≈

(
d

d(ct)

[
1
2

v2

c2

]
,

1

c2

d

dt
v

)
.

Now, in order to use the geodesic equation, we have to calculate the compo-

nents of the connection given in Eq.(2.40),

◦
Γ

λ
ρσ = 1

2
gλµ{∂ρgσµ + ∂σgρµ − ∂µgρσ} .

To begin with, we notice that g11 = g22 = g33 = −1 and, to the order we

are considering, g00 = 1−2V/c. Given the metric (3.53), only the derivatives

with respect to the space variables of g00 are �= 0. We arrive at the general

expression
◦
Γ

ρ
µν = 1

c2

[
(δk

µδ
0
ν + δk

νδ
0
µ) δρ0 − δ0

νδ
0
µδ

ρk
]

∂kV .

The only non-vanishing components are

◦
Γ

k
00 =

◦
Γ

0
0k =

◦
Γ

0
k0 = 1

c2
∂kV .

The geodesic equations are:
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1. for the time-like component,

0 =
dU0

ds
+

◦
Γ

0
µνU

µU ν ≈ d

d(ct)

[
1
2

v2

c2

]
+ 2

◦
Γ

0
k0U

kU0

≈ d

dt

[
1
2

v2

c3

]
+ 2 1

c3
∂kV vk .

Both terms are of order 1/c3, equally negligible in our approximation.

2. the space-like components are more informative:

0 =
dUk

ds
+

◦
Γ

k
µνU

µU ν ≈ 1

c2

d

dt
vk +

◦
Γ

k
00U

0U0 = 1
c2

d

dt
vk + 1

c2
∂kV ,

which is the force equation force
equation

d

dt
vk = − ∂kV . (3.58)

§ 3.35 In the non-relativistic limit, only g00 remains, as well as R00. Ein-

stein’s equation greatly enlarge the the scope of the problem. What they

achieve is better stateid in the words of Mashhoon (reference of the footnote

in page 3):

“the newtonian potential V is generalized to the ten compo-

nents of the metric; the acceleration of gravity is replaced by

the Christoffel connection; and the tidal matrix ∂2V
∂xi∂xj is replaced

by the curvature tensor; the trace of the tidal matrix is related

to the local density of matter ρ; the Riemann tensor is related to

the energy–momentum tensor”

3.6 About Time, and Space

3.6.1 Time Recovered

§ 3.36 A gravitational field is said to be constant when a reference frame

exists in which all the components gµν are independent of the “time coordi-

nate” x0. This coordinate, by the way, is usually referred to as “coordinate

time”, or “world time”. The non-relativistic limit given above is an example

of constant gravitational field, as the potential V in (3.53) is supposed to be

time-independent.
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§ 3.37 Let us now examine the relation between proper time and the “coor-

dinate time” x0 = ct. Consider two close events at the same point in space.

As d�x = 0, the interval between them will be ds = cdτ , where τ is time as

seen at the point. This means that ds2 = c2dτ 2 = g00(dx0)2, or that

dτ =
1

c

√
g00 dx0 =

√
g00 dt . (3.59)

As long as the coordinates are defined, the time lapse between two events at

the same point in space will be given by

τ =
1

c

∫ √
g00 dx0 . (3.60)

This is the proper time at the point. In a constant gravitational field,

τ =
1

c

√
g00 x0 . (3.61)

Once a coordinate system is established, it is the coordinate time which is

seen from “abroad”. Nevertheless, a test particle plunged in the field will see

its proper time.

§ 3.38 Consider some periodic phenomenon taking place in a constant grav-

itational field. Its period will be given by the formula above and, as such,

will be different when measured in coordinate time or with a “proper” clock.

Its proper frequency will have, for the same reason, the values

ω =
ω0√
g00

. (3.62)

In the non-relativistic limit, (3.53) will lead to

ω = ω0

(
1 − V

c2

)
. (3.63)

§ 3.39 Consider a light ray goint from a point “1” to a point “2” in a weak

constant gravitational field. If the values of the potential are V1 and V2 at

points “1” and “2”, its proper frequency will be ω1 = ω0

(
1 − V1

c2

)
at point

“1” and ω2 = ω0

(
1 − V2

c2

)
at point “2”. It will consequently change while
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moving from one point to the other. As the potential is a negative function,

V = −|V |, this change will be given by

∆ ω = ω2 − ω1 = ω0

( |V2| − |V1|
c2

)
. (3.64)

If the field is stronger in “1” than in “2”, |V1| > |V2| and ω2 < ω1. The red
shift

frequency, if in the visible region, will become redder: this is the phenomenon

of gravitational red-shift.

§ 3.40 This effect provides one of the three “classical” tests of General Rel-

ativity. The others will be seen later: they are the precession of the planets

perihelia (§ 4.12) and the light ray deviation (§ 4.13).

3.6.2 Space

§ 3.41 In Special Relativity, it is enough to put dx0 = 0 in the interval ds to

get the infinitesimal space distance dl. The relationship between the proper

time and the coordinate time is the same at every point. This is no more

the case in General Relativity. The standard procedure to obtain the space

interval runs as follows (see Figure 3.2). Consider two close points in space,

P = (xµ) and Q = (xµ +dxµ). Suppose Q sends a light signal to P , at which

there is a mirror which sends it back through the same space path. With

time τ measured at Q, the distance between Q and P will be dl = cτ/2. The

interval, which vanishes for a light signal, is given by

ds2 = gijdxidxj + 2 g0jdx0dxj + g00dx0dx0 = 0 . (3.65)

Solving this second-order polynomial for dx0, we find the two values

dx0
(1) =

1

g00

[
−g0jdxj −

√
(g0ig0j − gijg00)dxidxj

]
;

dx0
(2) =

1

g00

[
−g0jdxj +

√
(g0ig0j − gijg00)dxidxj

]
.

The interval in coordinate time from the emission to the reception of the

signal at Q will be

dx0
(2) − dx0

(1) =
2

g00

√
(g0ig0j − gijg00)dxidxj.
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The corresponding proper time is obtained by (3.59):

dτ =
2

c
√

g00

√
(g0ig0j − gijg00)dxidxj.

The space interval dl = cτ/2 is then

dl =

√(
g0ig0j

g00

− gij

)
dxidxj,

or

dl2 = γijdxidxj , with γij = − gij +
g0ig0j

g00

. (3.66)

This is the space metric. Curiously enough, the inverse is simpler: it so

happens that

γij = − gij . (3.67)

This can be seen by contracting gij with γjk.

QP

x0

x0 dx 2
0

x0 dx 1
0

x0 x0∆+

Figure 3.2: Q sends a light sign towards a mirror at P , which sends it back.

§ 3.42 Finite distances in space have no meaning in the general case, in

which the metric is time-dependent. If we integrate
∫

dl and take the infimum

(as explained in § 2.45), the result will depend on the world-lines. Only

constant gravitational fields allow finite space distances to be defined.
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§ 3.43 When are two events simultaneous ? In the case of Figure 3.2, the

instant x0 of P should be simultaneous to the instant of Q which is just in

the middle between the emission and the reception of the signal, which is

x0 + ∆x0 = x0 + 1
2

[dx0
(2) + dx0

(1)] .

Thus, the difference between the coordinate times of two simultaneous but

spatially distinct events is

∆x0 = − g0i

g00

dxi.

Time flows differently in different points of space. This relation allows one to

synchonize the clocks in a small region. Actually, that can be progressively

done along any open line. But not along a closed line: if we go along a closed

curve, we arrive back at the starting point with a non-vanishing ∆x0. This

is not a property of the field, but of the general frame. For any given field, it

is possible to choose a system of coordinates in which the three components

g0i vanish. In that system, it is possible to synchonize the clocks.

§ 3.44 Suppose that a reference system exists in which synchronous
system

1. the synchronization condition holds:

g0i = 0 (3.68)

2. and further

g00 = 1. (3.69)

Then, the coordinate time x0 = ct in that system will represent proper time

in all points covered by the system. That system is called a synchronous

system. The interval will, in such a system, have the form

ds2 = c2dt2 − γijdxidxj (3.70)

and

γij = − gij. (3.71)
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Direct calculation shows that Γλ
00 = 0 in such a coordinate system. This

has an important consequence: the four-velocity uλ = dxλ

ds
, tangent to the

world-line xi = 0 (i = 1, 2, 3)) has components (u0 = 1, ui = 0) and satisfies

the geodesic equation. Such geodesics are orthogonal to the surfaces ct =

constant. In this way it is possible to conceive spacetime as a direct product

of space (the above surfaces) and time. This system is not unique: any

transformation preserving the time coordinate, or simple changing its origin,

will give another synchronous system.

3.7 Equivalence, Once Again

§ 3.45 Consider a Levi-Civita connection
◦
Γ defined on a manifold M and

a point P ∈ M . Without loss of generality, we can choose around P a

coordinate system {xµ} such that xµ(P ) = 0. Such a system will cover a

neighbourhood N of P (its coordinate neighbourhood), and will provide dual

holonomic bases { ∂
∂xµ , dxµ}, with dxλ( ∂

∂xµ ) = δλ
µ, for vector fields and 1-forms

(covector fields) on N . Any other base {ea, e
a such that ea(eb) = δa

b }, will

be given by the components of its members in terms of such initial holonomic

bases, as {ea = ea
µ(x) ∂

∂xµ , ea = ea
λ(x)dxλ}. Take another coordinate system

{ya} around P , with a coordinate neighborhood N ′′ such that P ∈ N ∩
N ′′ �= ∅. This second coordinate system will define another holonomic base

{ea = ∂
∂ya = ∂xµ

∂ya
∂

∂xµ , ea = dya = ∂ya

∂xµ dxµ}. It will be enough for our purposes

to consider inside the intersection N∩N ′′ a non-empty sub–domain N ′, small

enough to ensure that only terms up to first order in the xµ’s can be retained

in the calculations.

Let us indicate by
◦
Γλ

µν(x) the components of Γ in the first holonomic

base, and by
◦
Γa

bν(x) the components of Γ referred to base { ∂
∂ya , dya}. These

components will be related by

◦
Γ

λ
µν(x) =

∂xλ

∂ya

◦
Γ

a
bν(x)

∂yb

∂xµ
+

∂xλ

∂yc

∂

∂xν

∂yc

∂xµ
, (3.72)

or

◦
Γ

a
bν(x) =

∂ya

∂xλ

◦
Γ

λ
µν(x)

∂xµ

∂yb
+

∂ya

∂xρ

∂

∂xν

∂xρ

∂yb
. (3.73)
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Let us indicate by γλ
µν =

◦
Γλ

µν(P ) the value of the connection components

at the point P in the first holonomic system. On a small enough domain N ′

the connection components will be approximated by

◦
Γ

λ
µν(x) = γλ

µν + xρ [∂ρ

◦
Γ

λ
µν ]P

to first order in the coordinates xµ. Choose now the second system of coor-

dinates

ya = δa
µx

µ + 1
2

δa
λγ

λ
µν xνxµ . (3.74)

Then,
∂ya

∂xµ
= δa

µ + δa
λ γλ

µν xν ;
∂xµ

∂ya
= δµ

a − δρ
a γµ

ρν δν
c y

c .

Taken into (3.73), these expressions lead to

◦
Γ

a
bν(x) = δa

λδ
σ
b

[
∂ε

◦
Γ

λ
σν(P ) − γλ

ρνγ
ρ
σε

]
xε. (3.75)

We see that at the point P , which means {xµ = 0}, the connection compo-

nents in base {∂a} vanish:
◦
Γa

bν(P ) = 0. The curvature tensor at P , however,

is not zero:

◦
R

λ
σµν(P ) = ∂µ

◦
Γ

λ
σν(P ) − ∂ν

◦
Γ

λ
σµ(P ) + γλ

ρµγ
ρ
σν − γλ

ρνγ
ρ
σµ .

It is thus possible to make the connection to vanish at each point by a suit-

able choice of coordinate system. The equation of force, or the geodesic

equation, acquire the expressions they have in Special Relativity. The cur-

vature, nevertheless, as a real tensor, cannot be made to vanish by a choice

of coordinates.

Furthermore, we have from Eq.(3.74)

d

ds
ya = δa

λ

[
Uλ + γλ

(µν) U νxµ
]

;

d2

ds2
ya = δa

λ

[
d

ds
Uλ + γλ

(µν) U νUµ

]
+ δa

λγ
λ
(µν) xµ

[
d

ds
U ν

]
.

Then, at P ,
dya

ds
= δa

µ Uµ(P ) ;
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d2ya

ds2
= δa

λA
λ.

Suppose a self–parallel curve goes through P in N ′ with velocity Uµ. Then,

at P , dya

ds
= δa

µ Uµ(P ) = constant = Ua(P ) and d2

ds2 ya = 0. As by Eq.(3.74) geodesic
system

ya(P ) = 0, this gives for the geodesic

ya = Ua(P ) s

in some neighborhood around P . The geodesic is, in this system, a straight

line.

3.8 More About Curves

3.8.1 Geodesic Deviation

§ 3.46 Curvature can be revealed by the study of two nearby geodesics. Let

us take again Eq. (3.1), rewritten in the form

UβV α
;β = V βUα

;β (3.76)

The deviation between two neighboring geodesics in Figure 3.1 is mea-

sured by the vector parameter ηα = V αδV , with δV a constant. It gives

the difference between two points (such as a1 and b1 in that Figure) with

the same value of the parameter u. Or, if we prefer, η relates two geodesics

corresponding to V and V + δV .

Let us examine now the second-order derivative

D2V α

Du2
= (UβV α

;β);γU
γ.

Use of Eq.(3.76) allows to write

D2V α

Du2
= (V βUα

;β);γU
γ = V β

;γU
γUα

;β + V βUα
;β;γU

γ

= Uβ
;γV

γUα
;β + V βUα

;β;γU
γ ,

where once again use has been made of Eq.(3.76). Now, Eq.(2.55) leads to

D2V α

Du2
= (Uγ

;βV βUα
;γ + V βUγUα

;γ;β) − V βUγ
◦
R

α
εβγU

ε
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= V β(Uα
;γU

γ);β +
◦
R

α
εγβU εUγV β .

The first term on the right-hand side vanishes by the geodesic equation. We

have thus, for the parameter η,

D2ηα

Du2
=

◦
R

α
εγβU εUγηβ . (3.77)

This the geodesic deviation equation.

As a heuristic, qualitative guide: test particles tend to close to each other

in regions of positive curvature and to part from each other in regions of

negative curvature.

3.8.2 General Observers

§ 3.47 Let us go back to the notion of observer introduced in § 3.11. An

ideal observer — a timelike curve — will only feel the connection, and that

can be made to vanish along a piece of that curve. Nevertheless, a real

observer will have at least two points, each one following its own timelike

curve. It will consequently feel curvature — that is, the gravitational field.

§ 3.48 Let us go back to curves, with a mind to observers. Given a curve γ,

it is convenient to attach a vector basis at each one of its points. The best

bases are those which are (pseudo-)orthogonal. This is to say that, if the

members have components ha
µ, then

gµνha
µhb

ν = ηab . (3.78)

Consider a set of 4 vectors e0, e1, e2, e3 at a point P on γ, satisfying the

following conditions:

De0

Ds
= be3;

De3

Ds
= ce1 + be0;

De1

Ds
= de2 − ce3;

De2

Ds
= − d e1 . (3.79)

These are called the Frenet–Serret conditions. The choice of non-vanishing

parameters is such as to allow the 4–vectors to be orthogonal. Actually, these

four vectors are furthermore required to be orthonormal at each point of γ:

e0 · e0 = 1; e1 · e1 = e2 · e2 = e3 · e3 = −1 . (3.80)
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We shall always consider timelike curves, with velocity U = e0. In the Frenet–

Serret language, e1, e2, e3 will be the first, second and third normals to γ at

P . The parameters b, c, d are real numbers, called the first, second and third

curvatures of γ at P .

By what we have said above, be3 = A, the acceleration, which is orthog-

onal to the velocity. The absolute value of the first curvature of γ at P is,

thus, the acceleration modulus: |b| = |A|.
For a geodesic, b = c = d = 0. The case b = constant, c = d = 0

corresponds to an hyperbola of constant curvature and the case b = constant,

c =constant, d = 0, to a helix.

§ 3.49 Of course, most curves are not geodesics. A geodesic represents an

observer in the absence of any external force. An observer may be settled on

a linearly accelerated rocket, or turning around Earth, or still going through

a mad spiral trajectory. An orthogonal tetrad defined as above remains an

orthogonal tetrad under parallel transport, which also preserves the compo-

nents of a vector in that tetrad. There is, however, a problem with parallel

transport: if we take, as above, e0 as the velocity U at a point P , e0 will not

be the velocity at other points of γ, unless γ is a geodesic.

There are other kinds of “transport” which preserve orthogonal tetrads

and components. There is one, in special, which corrects the mentioned

problem with the velocity:

The Fermi-Walker derivative of a vector V is defined by
Fermi−
Walker

transport

DFW V λ

Ds
=

DV λ

Ds
− b Vν(e

ν
0e

λ
3 − eλ

0e
ν
3) =

DV λ

Ds
− Vν(U

νAλ − UλAν). (3.81)

A vector V is said to be Fermi–Walker–transported along a curve γ of

velocity field U if its the Fermi-Walker derivative vanishes,

DFW V λ

Ds
=

DV λ

Ds
− Vν(U

νAλ − UλAν) = 0 . (3.82)

We see that, applied to U , DFW Uλ

Ds
= 0, and also that DFW

Ds
= D

Ds
if the

curve γ is a geodesic. Take two vector fields X and Y such that DFW Xλ

Ds
= 0

and DFW Y λ

Ds
= 0. Then, it follows that the component of X along Y is

preserved along γ:
D(XλY

λ)

Ds
=

d(XλY
λ)

ds
= 0.
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In particular, if e0 = U at P , then e0 will remain = U along the curve if it is

Fermi-Walker transported.

3.8.3 Transversality

§ 3.50 Given a curve γ whose tangent velocity is U , it is interesting to

introduce a “transversal metric” by

hµν = gµν − UµUν . (3.83)

Transversality is evident: hµνU
ν = 0. In particular, hµνA

ν = Aµ. A projector

is an operator P satisfying P 2 = P . Matrices (hσ
ν) = (gσµhµν) = (δσ

ν −
UσUν) are projectors: hσ

νh
ν
µ = hσ

µ. They satisfy hµ
νh

ν
λ = hµ

νg
νρhρλ =

hµ
νg

νρ(gρλ − UρUλ) = hµ
λ. Notice that gµνhµν = hµνhµν = hµ

µ = 3. The

energy–momentum tensor (3.36) of a general fluid can be rewritten as

Tµν = (p + ε)UµUν − p gµν = ε UµUν − p hµν . (3.84)

The transversal metric extracts the pressure:

T µνhµν = − 3 p.

The Einstein equations with this energy–momentum tensor give, by contrac-

tion,

RµνU
µU ν =

4πG

c4
(ε + 3p) − Λ . (3.85)

We have seen in § 3.21 that the streamlines of a general fluid — unlike those of

a dust cloud — are not geodesics. The equation of force (3.37) has, actually,

the form
fluid

stream
lines

(p + ε)
DUµ

Ds
= hµν∂νp . (3.86)

The pressure gradient, as usual, engenders a force. In the relativistic case the

force is always transversal to the curve. Here, it is the transversal gradient

that turns up. The equation above governs the streamlines of a general fluid.
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3.8.4 Fundamental Observers

§ 3.51 On a pseudo–Riemannian spacetime, there exists always a family of

world–lines which is preferred. They represent the motion of certain preferred

observers, the fundamental observers and the curves themselves are called the

fundamental world–lines. Proper time coincides with the line parameter, so

that he 4-velocities along these lines are Uµ = dxµ

ds
and, consequently U2

= UµUµ = 1. The time derivative of a tensor T ρσ...
µν... is d

ds
T ρσ...

µν... =
d

dxλ T ρσ...
µν...

dxλ

ds
= (T ρσ...

µν...),λ Uλ. This is not covariant. The covariant time

derivative, absolute derivative, is

D

Ds
T ρσ...

µν... = (T ρσ...
µν...);λ uλ.

For example, the acceleration is

Aµ =
D

Ds
Uµ = Uµ

;ν U ν .

Using the Christoffel connection, it is easily seen that UµA
µ = 0. This prop-

erty is analogous to that found in Minkowski space, but here only has an

invariant sense if acceleration is covariantly defined, as above.

At each point P , under a condition given below, a fundamental observer

has a 3-dimensional space which it can consider to be “hers/his own”: its

rest–space. Such a space is tangent to the pseudo–Riemannian spacetime

and, as time runs along the fundamental world–line, orthogonal to that line

at P (orthogonal to a line means orthogonal to its tangent vector, here Uµ).

At each point of a world–line, that 3-space is determined by the projectors

hµν .

It is convenient to introduce the notations

U(µ;ν) = 1
2

(Uµ;ν + Uν;µ) ; U[µ;ν] = 1
2

(Uµ;ν − Uν;µ)

for the symmetric and antisymmetric parts of Uµ;ν . There are a few important

notions to be introduced:

• the vorticity tensor

ωµν = hρ
µh

σ
νU[ρ;σ] = U[µ;ν] + U[µAν] ; (3.87)

it satisfies ωµν = ω[µν] = - ωνµ and ωµνU
ν = 0; it is frequently indicated

by its magnitude ω2 = 1
2

ωµν ωµν ≥ 0.
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• the expansion tensor

Θµν = hρ
µh

σ
νU(ρ;σ) = U(µ;ν) − U(µAν) ; (3.88)

its transversal trace is called the volume expansion; it is Θ = hµνΘµν =

Θµ
µ = Uµ

;µ, the covariant divergence of the velocity field; it measures

the spread of nearby lines, thereby recovering the original meaning of

the word divergence; in the Friedmann model, Θ turns up as related to

the Hubble expansion function by Θ = 3H(t).

• σµν = Θµν − 1
3

Θ hµν = σ(µν) is the symmetric trace–free shear tensor;

it satisfies σµνu
ν = 0 and σµ

µ = 0 and its magnitude is defined as

σ2 = 1
2

σµνσ
µν ≥ 0. Notice ΘµνΘ

µν = 2 σ2 + 1
3

Θ2.

Decomposing the covariant derivative of the 4-velocity into its symmetric

and antisymmetric parts, Uρ;σ = U(ρ;σ) + U[ρ;σ], and using the definitions

(3.87) and (3.88), we find

Uµ;ν = ωµν + Θµν + AµUν , (3.89)

or

Uµ;ν = ωµν + σµν + 1
3

Θ hµν + AµUν . (3.90)

§ 3.52 With the above characterizations of the energy density and the pres-

sure, the Einstein equations reduce to the Landau–Raychaudhury equation.

Let us go back to Eq.(2.55) and take its contracted version
Landau−

Raychaudhury
equation

Uα
;α;γ − Uα

;γ;α = −
◦
RαγU

α . (3.91)

Contracting now with Uγ,

UγUα
;α;γ − UγUα

;γ;α = −
◦
RαγU

αUγ .

∴ D

Ds
Uα

;α − (UγUα
;γ);α + Uα

;γU
γ
;α +

◦
RαβUαUβ = 0 ,

∴ d

ds
Uα

;α − Aα
;α + Uα

;γ Uγ
;α +

◦
RαβUαUβ = 0 .

To obtain Uα
;γ Uγ

;α, we notice that

ΘµνΘ
µν = 1

2

[
Uα;β Uα;β + Uα;β Uβ;α − AαAα

]
;
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ωµνω
µν = 1

2

[
Uα;β Uα;β − Uα;β Uβ;α − AαAα

]
.

It follows that

Uα
;γ Uγ

;α = ΘµνΘ
µν − ωµνω

µν = 2 σ2 − 2 ω2 +
1

3
Θ2 .

The equation acquires the aspect

d

ds
Θ + 2 (σ2 − ω2) +

1

3
Θ2 − Aα

;α +
◦
Rαβ UαUβ = 0 . (3.92)

Up to this point, only definitions have been used. Einstein’s equations lead,

however, to Eq.(3.85), which allows us to put the above expression into the

form

d

ds
Θ = − 1

3
Θ2 − 2

(
σ2 − ω2

)
+ Aµ

;µ − 4πG

c4
(ε + 3p) + Λ . (3.93)

The promised condition comes from a detailed examination which shows

that, actually, only when ωµν = 0 there exists a family of 3-spaces everywhere

orthogonal to Uµ. In that case, there is a well–defined time which is the same

over each 3-space.

From the above equation, we can see the effect of each quantity on ex-

pansion: as we proceed along a fundamental world–line, expansion

• decreases (an indication of attraction) with higher values of

expansion itself

shear

energy content

• increases (an indication of repulsion) with higher values of

vorticity

second-acceleration

cosmological constant .
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3.9 An Aside: Hamilton-Jacobi

§ 3.53 The action principle we have been using [say, as in Eq.(1.5), or (3.51)]

has a “teleological” character which brings forth a causal problem. When we

look for the curve γ which minimizes the functional

S[γ] =

∫ t1

t0

Ldt =

∫
γPQ

Ldt ,

we seem to suppose that the behavior of a particle, starting from a point P

at instant t0, is somehow determined by its future, which forcibly consists

in being at a fixed point Q at instant t1. Another notion of action exists

which avoids this difficulty. Instead of as a functional S is conceived, in that

version, as a function

S(q1(t), q2(t), ..., qn(t), t) =∫ t

t0

dt′L [q1(t
′), q2(t

′), ..., qn(t′), q̇1(t
′), q̇2(t

′), ..., q̇n(t′)] (3.94)

of the final time t and the values of the generalized coordinates at that instant

for the real trajectory. The particle, by satisfying the Lagrange equation at

each point of its path, automatically minimizes S. In effect, taking the

variation

δS =∫ t

t0

dt′
[

∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

]
=

∫ t

t0

dt′
[

∂L

∂qi
δqi +

∂

∂t′

(
∂L

∂q̇i
δqi

)
−

(
∂

∂t′
∂L

∂q̇i

)
δqi

]

=

[
∂L

∂q̇i
δqi

]t

t0

+

∫ t

t0

dt′
[

∂L

∂qi
−

(
∂

∂t′
∂L

∂q̇i

)]
δqi .

The second term vanishes by Lagrange’s equation. In the first term, δqi(t0) =

0, so that

δS =
∂L

∂q̇i
δqi = pi δqi , (3.95)

which entails

pi =
∂S

∂qi
. (3.96)
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We have been forgetting the time dependence of S. The integral (3.94) says

that L = dS
dt

. On the other hand,

dS

dt
=

∂S

∂t
+

∂S

∂qi
q̇i =

∂S

∂t
+ piq̇

i.

Consequently,

∂S

∂t
= L − piq̇

i = − H. (3.97)

Thus, the total differential of S will be

dS = pidqi − Hdt . (3.98)

Variation of the action integral

S =

∫ [
pidqi − Hdt

]
(3.99)

leads indeed to Hamilton’s equations:

δS =

∫ [
δpidqi + pidδqi − ∂H

∂qi
δqidt − ∂H

∂pi

δpidt

]

=

∫ [
δpi

dqi

dt
+ pi

dδqi

dt
− ∂H

∂qi
δqi − ∂H

∂pi

δpi

]
dt

=

∫ [
δpi

(
dqi

dt
− ∂H

∂pi

)
−

(
dpi

dt
+

∂H

∂qi

)
δqi

]
dt.

An integration by parts was performed to arrive at the last espression which,

to produce δS = 0 for arbitrary δqi and δpi, enforces

dqi

dt
=

∂H

∂pi

;
dpi

dt
= − ∂H

∂qi
. (3.100)

§ 3.54 Hamilton’s equations are invariant under canonical transformations

leading to new variables Qi = Qi(qi, pj, t), Pi = Pi(q
i, pj, t), H ′(Qi, Pj, t).

This means that if

δ

∫ [
pidqi − Hdt

]
= 0 ,

then also

δ

∫ [
PidQi − H ′dt

]
= 0
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must hold. In consequence, the two integrals must differ by the total differ-

ential of an arbitrary function:

pidqi − Hdt = PidQi − H ′dt + dF .

F is the generating function of the canonical transformation. It is such that

dF = pidqi − PidQi + (H ′ − H)dt .

Therefore,

pi =
∂F

∂qi
; Pi = − ∂F

∂Qi
; H ′ = H +

∂F

∂t
. (3.101)

In the formulas above, the generating function appears as a function of the

old and the new generalized coordinates, F = F (q, Q, t). We obtain another

generating function f = f(q, P, t), with the new momenta instead of the new

generalized coordinates, by a Legendre transformation: f = F + QiPi, for

which

df = dF + dQiPi + QidPi = pidqi + QidPi + (H ′ − H)dt .

In this case,

pi =
∂f

∂qi
; Qi =

∂f

∂Pi

; H ′ = H +
∂f

∂t
. (3.102)

Other generating functions, related to other choices of arguments, can of

course be chosen. For instance, the function g =
∑

i q
iQi generates a simple

interchange of the initial coordinates and momenta.

§ 3.55 Let us go back to Eq. (3.97),

∂S

∂t
+ H(q1, q2, ..., qn, p1, p2, ..., pn, t) = 0 . (3.103)

By Eq. (3.96), the momenta are the gradients of the action function S.

Substituting their expressions in the above formula, we find a first order

partial differential equation for S,

∂S

∂t
+ H

(
q1, q2, ..., qn,

∂S

∂q1
,

∂S

∂q2
, . . . ,

∂S

∂qn
, t

)
= 0 . (3.104)
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This is the Hamilton-Jacobi equation. The general solution of such an equa-

tion depends on an arbitrary function. The solution which is important for

Mechanics is not the general solution, but the so-called complete solution

(from which, by the way, the general solution can be recovered). That solu-

tion contains one arbitrary constant for each independent variable, (n+1) in

the case above. Notice that only derivatives of S appear in the equation. One

of the constants (C below) turns up, consequently, isolated. The complete

solution has the form

S = f
(
q1, q2, ..., qn, a1, a2, . . . , an, t

)
+ C. (3.105)

We have indicated the arbitrary constants by a1, a2, . . . , an and C.

The connection to the mechanical problem is made as follows. Consider

a canonical transformation with generating function f , taking the original

variables (q1, q2, ..., qn, p1, p2, ..., pn) into (Q1, Q2, ..., Qn, a1, a2, ..., an). This is

a transformation of the type summarized in Eq. (3.102), with a1, a2, ..., an as

the new momenta. From those equations and (3.105),

pi =
∂S

∂qi
; Qi =

∂S

∂Pi

; H ′ = H +
∂S

∂t
= 0 . (3.106)

To get the vanishing of the last expression use has been made of Eq. (3.104).

Hamilton equations havee then the solutions Qn = constant, ak = constant.

From the equations Qi = ∂S
∂ai

it is possible to obtain back

qk = qk
(
Q1, Q2, ..., Qn, a1, a2, . . . , an, t

)
,

that is, the old coordinates written in terms of 2n constants and the time.

This is the solution of the equation of motion. Summing up, the procedure

runs as follows:

• given the Hamiltonian, one looks for the complete solution (3.105) of

the Hamilton-Jacobi equation (3.104);

• once the solution S is obtained, one derives with respect to the con-

stants ak and equate the results to the new constants Qk; the equations

Qi = ∂S
∂ai

are algebraic;
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• that set of algebraic equations are then solved to give the coordinates

qk(t);

• the momenta are then found by using pi = ∂S
∂qi .

§ 3.56 For conservative systems, H is time-independent. The action de-

pends on time in the form

S(q, t) = S(q, 0) − E t.

It follows that

H

(
q1, q2, ..., qn,

∂S(q, 0)

∂q1
,

∂S(q, 0)

∂q2
, . . . ,

∂S(q, 0)

∂qn

)
= E , (3.107)

which is the time-independent Hamilton-Jacobi equation.

The same happens whenever some integral of motion is known from the

start. Each constant of motion is introduced as one of the constants. For

instance, central potentials, for which the angular momentum J is a constant,

will lead to a form

S(r, t) = S(r, 0) − Et + Jφ.

These are particular cases, in which time or an angle are cyclic variables.

In effect, suppose some coordinate q(c) is cyclic. This means that q(c) does

not appear explicitly in the Hamiltonian nor, consequently in the Hamilton-

Jacobi equation. The corresponding momentum is therefore constant, p(c)

= ∂S
∂q(c)

= a(c). It is an integral of motion, and S = S(remaining variables)

+a(c)q(c).

§ 3.57 Of course, a suitable choice of coordinate system is essential to isolate

a cyclic variable. For a particle in a central potential, spherical coordinates

are the obvious choice. In the Hamiltonian

H =
1

2m

[
p2

r +
p2

θ

r2
+

p2
φ

r2 sin2 θ

]
+ U(r) ,

the variables θ and φ, besides t, are absent. We shall use the knowledge that

the angular momentum J = mr2φ̇ is a constant, and start from the simpler

planar Hamiltonian

H =
m

2

[
ṙ2 + r2φ̇2

]
+ U(r) =

p2
r

2m
+

J2

2mr2
+ U(r) .
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The time-independent Hamilton-Jacobi equation is then(
∂Sr

∂r

)2

+
J2

r2
= 2m(E − U(r)).

Thus,

S = − E t + J φ +

∫
dr

√
2m(E − U(r)) − J2

r2
.

Now, ∂S
∂E

= C gives

t =

∫
mdr√

2m[E − U(r)] − J2

r2

− C.

And ∂S
∂J

= C ′ gives

φ = C ′ +

∫
J dr

r2

√
2m[E − U(r)] − J2

r2

.

The constants can be chosen = 0, fixing simply the origins of time and angle.

The first equation,

t =

∫
m dr√

2m[E − U(r)] − J2

r2

, (3.108)

gives implicitly r(t). The second,

φ =

∫
J dr

r2

√
2m[E − U(r)] − J2

r2

, (3.109)

gives the trajectory.

We see that what is actually at work is an effective potential Ueff (r) =

U(r) + J2

2mr2 , including the angular momentum term. The values of r for

which Ueff (r) = E represent “turning points”. If the function r(t) is at first

decreasing, it becomes increasing at that value, and vice versa.

§ 3.58 Classical planetary motion There are two general kinds of motion:

limited (bound motion) and unlimited (scattering). We shall be concerned

here only with the first case, in which r(t) has a finite range rmin ≤ r(t) ≤
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rmax. In one turn, that is, in the time the variable takes to vary from rmin

to rmax and back to rmin, the angle φ undergoes a change

∆φ = 2

∫ rmax

rmin

J

r2

dr√
2m[E − U(r)] − J2

r2

. (3.110)

The trajectory will be closed if ∆φ = 2πm/n. A theorem (Bertrand’s) says

that this can happen only for two potentials, the Kepler potential U(r) =

− K/r and the harmonic oscillator potential U(r) = Kr2. We shall here limit

ourselves to the first case, which describes the keplerian motion of planets

around the Sun. For U(r) = − K/r, Eq.(3.109) can be integrated to give

φ = arccos




[
J

r
− mK

J

]
1√

2mE + m2K2

J2


 . (3.111)

This trajectory corresponds to a closed ellipse. In effect, introduce the “el-

lipse parameter” p = J2

mK
and the “eccentricity” e =

√
1 + 2EJ2

mK2 . Equation

(3.111) can then be put into the form

r =
p

1 + e cos φ
, (3.112)

which is the equation for the ellipse. The above choice of the integration

constants corresponds to φ = 0 at r = rmin, which is the orbit perihelium.

Suppose we add another potential (for example, U ′ = K ′/r3, with K ′ small.

The orbit, as said above, will be no more closed. Staring from φ = 0 at

r = rmin, the orbit will reach the value r = rmin at φ �= 0 in the first

turn, and so on at each turn. The perihelium will change at each turn.

This efect (called the perihelium precession) could come, for example, from

a non-spherical form of the Sun. A turning gas sphere can be expected to be

oblate. Observations of the Sun tend to imply that its oblateness is negligible,

in any case insufficient to answer for the observed precession of Mercury’s

perihelium. We shall see later (§4.12) that General Relativity predicts a value

in good agreement with observations.

Comment 3.7 We recall that the equation of the ellipse in cartesian coordinates is x2

a2 +
y2

b2 = 1, e =
√

a2−b2

a and p = b2/a. For a circle, a = b and e = 0.
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§ 3.59 We have already seen the main interest of the Hamilton-Jacobi for-

malism: in the relativistic case, the Hamilton-Jacobi equation (3.17) for a

free particle coincides, for vanishing mass, with the eikonal equation (3.18).

The formalism allows a unified treatment of test particles and light rays.
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Chapter 4

Solutions

Einstein’s equations are a nightmare for the searcher of solutions: a system
of ten coupled non-linear partial differential equations. Its a tribute to hu-
man ingenuity that many (almost thirty to present time) solutions have been
found. The non-linear character can be interpreted as saying that the grav-
itational field is able to engender itself. In consequence, the equations have
non-trivial solutions even in the absence of sources. Actually, most known
solutions are of this kind. We shall only examine a few examples, divided
into two categories: “small scale solutions”, which are of “local” interest,
idealized models for stars (which gives an idea of what we mean by “small”)
and objects alike; and “large scale solutions”, of cosmological interest.

4.1 Transformations

In tackling the big task of solving so difficult a problem, it is not surprising
that the hunters have always supposed a high degree of symmetry. Let us
begin with a short comment on symmetries of spacetimes.∗

§ 4.1 Let us look for the condition for a vector field to generate a symmetry

of the metric. Consider an infinitesimal transformation

x′µ = xµ + εµ(x) , εµ(x) << 1 , (4.1)

arbitrary as longs as ε is an arbitrary, though small, function of x. To the

∗ A treatment of the subject is given in the chapter 13 of S. Weinberg, Gravitation and
Cosmology, J. Wiley, New York, 1972.
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first order in ε,
∂x′µ

∂xλ
= δµ

λ +
∂εµ

∂xλ
.

Under such a tranformation, the metric components will change according

to

g′µν(x′) = gρσ(x)
∂x′µ

∂xρ

∂x′ν

∂xσ
= gρσ(x)

(
δµ
ρ +

∂εµ

∂xρ

) (
δν
σ +

∂εν

∂xσ

)

≈ gµν(x) + gµσ(x)
∂εν

∂xσ
+ gνσ(x)

∂εµ

∂xσ
.

On the other hand, always keeping only the first-order terms,

g′µν(x′) = g′µν(x + ε) ≈ g′µν(x) + ερ(x)∂ρg
′µν(x) ≈ g′µν(x) + ερ(x)∂ρg

µν(x) .

Equating both expressions,

g′µν(x) + ερ(x)∂ρg
µν(x) = gµν(x) + gµσ(x)

∂εν

∂xσ
+ gνσ(x)

∂εµ

∂xσ
,

from which we obtain the variation of the metric components at a fixed point,

δ̄gµν(x) = g′µν(x) − gµν(x) = gµσ(x)
∂εν

∂xσ
+ gνσ(x)

∂εµ

∂xσ
− ερ(x)

∂gµν

∂xρ
.

(4.2)

We now calculate the covariant derivative of εµ, conveniently separating

the pieces comming from the Christoffel symbol:

εµ;ν = ∂νεµ − 1
2
ελ∂λg

µν + 1
2
εσ(∂µgνσ − ∂νgµσ) .

We see then that

εµ;ν + εν;µ = ∂µεν + ∂νεµ − ερ∂ρg
µν . (4.3)

Therefore,

δ̄gµν(x) = εµ;ν + εν;µ . (4.4)

This gives the change in the functional form of gµν under the transformation Killing
equation

generated by the field ε = εµ∂µ. The condition for a symmetry is δ̄gµν(x) = 0,

that is,

εµ;ν + εν;µ = 0 . (4.5)
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This is the Killing equation. Fields satisfying it are called Killing fields. They

generate transformations preserving the metric, which are called isometries,

or motions. Applied to the Lorentz metric, the ten generators of the Poincaré

group are found.†

§ 4.2 We shall here quote three theorems:

• the first says that the maximal number of isometries in a d-dimensional

space is d(d + 1)/2.‡ Consequently, a given spacetime has at most 10

isometries.

• the second theorem says that this maximal number can only be attained

if the scalar curvature R is a constant. There are only three kinds of

spacetimes with 10 isometries: Minkowski spacetime, for which R = 0,

and the two families of de Sitter spacetimes, one with R > 0 and the

other with R < 0.

• a third theorem states that the isometries of a given metric constitute a

group (group of isometries, or group of motions). The Poincaré group

is the group of motions of Minkowski space.

§ 4.3 The converse procedure may be useful in the search of solutions: im-

pose a certain symmetry from the start, and find the metrics satisfying

Eq.(4.3) for the case,

ερ∂ρg
µν = ∂µεν + ∂νεµ . (4.6)

It should be said, however, that the Killing equation is still more useful in

the study of the simmetries of a metric given a priori.

§ 4.4 The above procedure is a very particular case of a general and pow-

erful method. How does a transformation acts on a manifold ? We are used

to translations and rotations in Euclidean space. The same transformations,

plus boosts and time translations, are at work on Minkowski space: they

preserve the Lorentz metric. For these we use generators like, for example,

† See for example W.R. Davis & G.H. Katzin, Am. J. Phys. 30 (1962) 750.
‡ L. P. Eisenhart, Riemannian Geometry, Princeton University Press, 1949.
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Lµν = xµ∂ν − xν∂µ, which is a vector field. This can be extended to general

manifolds: given a group of transformations, each generator is represented

on the manifold by a vector field X. This vector field presides on the in-

finitesimal transformations undergone by every tensor field by the so called Lie
derivative

Lie derivative, an operation denoted LX . The calculation above must be

repeated for each type of tensor T : take a transformation like (4.1), compare

T ′(x′) obtained from the tensor behavior with T ′(x′) obtained as a Taylor

series, etc. The general result is

(LXT )ab...r
ef...s = X(T ab...r

ef...s ) − (∂iX
a)T ib...r

ef...s − (∂iX
b)T ai...r

ef...s − ... − (∂iX
r)T ab...i

ef...s

+(∂eX
i)T ab...r

if...s + (∂fX
i)T ab...r

ei...s + ... + (∂sX
i)T ab...r

ef...i . (4.7)

The requirement of invariance is LXT = 0. For T a vector field, LXT is

just the commutator:

LXV = [X, V ] .

The vector V is invariant with respect to the transformations engendered by

X if it commutes with X.

Equation (4.2) is just the Lie derivative of gµν with respect to the field ε

= εµ∂µ:

Lεg
µν(x) = g′µν(x) − gµν(x) = gµσ(x)

∂εν

∂xσ
+ gνσ(x)

∂εµ

∂xσ
− ερ(x)

∂gµν

∂xρ
.

(4.8)

We shall not go into the subject in general.§ Let us only state a property

which holds when the tensor T is a differential form. For that we need a

preliminary notion.

§ 4.5 Given a vector field X, the interior product of a p-form α by X is that

(p-1)-form iXα, which, for any set of fields {X1, X2, . . . , Xp−1}, satisfies interior
product

iXα(X1, X2, . . . , Xp−1) = α(X, X1, X2, . . . , Xp−1). (4.9)

If α is a 1-form, it gives simply its action on X:

iXα = < α, X > = α(X).

§ A very detailed account can be found in B. Schutz,Geometrical Methods of Mathe-
matical Physics, Cambridge University Press, Cambridge, 1985.
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The interior product of X by a 2-form Ω is that 1-form satisfying iXΩ =

Ω(X, Y ) for any field Y . For a form of general degree, it is enough to know

that, for a basis element,

iX
[
α1 ∧ α2 ∧ . . . ∧ αp

]
=

p∑
j=1

(−)j−1α1 ∧ α2 ∧ . . . [iXαj] ∧ . . . ∧ αp.

§ 4.6 The promised result is as follows: if ω is a differential form, then its

Lie derivative has a simple expression in terms of the exterior derivative and

the interior product:

LXω = d[iXω] + iX [dω] .

Notice that LX preserves the tensor character: it takes an r-covariant, s-
contravariant tensor into another tensor of the same type.

4.2 Small Scale Solutions

Life is much simpler when a system of coordinates can be chosen so that
invariance means just independence of some of the coordinates. In that case,
Eq.(4.8) reduces to the last term and the intuitive property holds: the metric
components are independent of those variables.

4.2.1 The Schwarzschild Solution

§ 4.7 Suppose we look for a solution of the Einstein equations which has

spherical symmetry in the space section. This would correspond to central

potentials in Classical Mechanics. It is better, in that case, to use spherical

coordinates (x0, x1, x2, x3) = (ct, r, θ, φ). This is one of the most studied of

all solutions, and there is a standard notation for it. The interval is written

in the form

ds2 = eνc2dt2 − r2(dθ2 + sin2 θdφ2) − eλdr2 . (4.10)

The contravariant metric is consequently

g = (gµν) =




eν 0 0 0

0 −eλ 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ


 (4.11)
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and its covariant counterpart,

g−1 = (gµν) =




e−ν 0 0 0

0 −e−λ 0 0

0 0 −r−2 0

0 0 0 −r−2 sin−2 θ


 . (4.12)

We have now to build Einstein’s equations. The first step is to calculate

the components of the Levi-Civita connection, given by Eq.(2.40). Those

which are non-vanishing are:

Γ0
00 = 1

2
dν
cdt

; Γ0
10 = Γ0

01 = 1
2

dν
dr

; Γ0
11 = 1

2
eλ−ν dλ

cdt
;

Γ1
00 = 1

2
eν−λ dν

dr
; Γ1

01 = Γ1
10 = 1

2
dλ
cdt

; Γ1
11 = 1

2
dλ
dr

;

Γ1
22 = −r e−λ ; Γ1

33 = −re−λ sin2 θ ;

Γ2
12 = Γ2

21 = 1
r

; Γ2
33 = − sin θ cos θ ;

Γ3
13 = Γ3

31 = 1
r

; Γ3
23 = Γ3

32 = − cot θ . (4.13)

As the second step, we must calculate the Ricci tensor of Eq.(2.48) and

the Einstein tensor (2.59). We list those which are non-vanishing:

G0
0 = 1

r2 − e−λ
[

1
r2 − 1

r
dλ
dr

]
; G1

0 = − 1
r

e−λ dλ
cdt

; G1
1 = 1

r2 −e−λ
(

1
r

dν
dr

+ 1
r2

)
G2

2 = G3
3 = −1

2
e−λ

[
d2ν
dr2 + 1

2
(dν

dr
)2 + 1

r
(dν

dr
− dλ

dr
) − 1

2
(dν

dr
dλ
dr

)
]

+1
2

e−ν
(

d2λ
c2dt2

+ 1
2

( dλ
cdt

)2 − 1
2

dλ
cdt

dν
cdt

)
. (4.14)

Each Gµ
ν should now be imposed to be equal to 8πG

c4
T µ

ν . The source could

be, for example, an electromagnetic field, in which case Eq.(3.35) would be

used. Or the fluid inside a star, with the source given by Eq.(3.36) sup-

plemented by an equation of state. Notice that the symmetry requirements

made above would be satisfied not only by a static star, but also by a radially
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pulsating one. We shall here consider the so-called “external”, or “vacuum”

solution for this case. We shall put T µ
ν = 0, which is the case outside the

star. The four differential equations following from Gµ
ν = 0 in (4.14) reduce

in that case to only three (see Comment 4.1 below):

G0
0 = 0 ⇒ e−λ

[
1
r2 − 1

r
dλ
dr

]
= 1

r2 ;

G1
1 = 0 ⇒ e−λ

[
1
r2 + 1

r
dν
dr

]
= 1

r2 ; (4.15)

G1
0 = 0 ⇒ dλ

dt
= 0 .

A first result from Eqs.(4.15) is that λ is time-independent. Taking the

difference between the first two equations shows that

dλ

dr
= − dν

dr
. (4.16)

Substituting this back in those equations lead to

eλ = 1 + r
dν

dr
. (4.17)

Equation (4.16) says that λ + ν is independent of r, and is consequently

a function of time alone: λ + ν = f(t). In the interval (4.10), it is always

possible to redefine the time by an arbitrary transformation t = φ(t′), which

corresponds to adding an arbitrary function of t to ν. The choice of a new

time coordinate t′ =
∫ t

0
e−f(t)/2dt corresponds to changing ν → ν ′ = ν + f(t).

This means that it is always possible to choose the time coordinate so as to

have λ + ν = 0.

Comment 4.1 Time-independence of λ entails the vanishing of the last line in (4.14).
Using (4.16) in (4.17) and taking the derivative implies that also the one-but-last line
vanishes. This shows that the equation G2

2 = G3
3 = 0 is indeed redundant.

Integration of the only remaining equation, which is (4.17) rewritten with

λ = − ν,

e−ν = 1 + r
dν

dr
,

leads then to

e−λ = eν = 1 − RS

r
,
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where RS is a constant. Far from the source, when r → ∞, we have e−λ =

eν → 1, so that the metric reduces to that of Minkowski space. Large values

of r means a weak gravitational field. To fix the constant RS, it is enough

to impose that, at those values of r the solution reduce to the newtonian

approximation, g00 = 1 + 2V/c2, with V = − GM/r and M the mass of

source body. It follows that

RS =
2GM

c2
. (4.18)

The interval (4.10) is therefore

ds2 =

(
1 − 2GM

c2 r

)
c2dt2 − r2(dθ2 + sin2 θdφ2) − dr2

1 − 2GM
c2 r

(4.19)

=

(
1 − RS

r

)
c2dt2 − r2(dθ2 + sin2 θdφ2) − dr2

1 − RS

r

. (4.20)

This is the solution found by K. Schwarzschild in 1916, soon after Eintein

had presented his final version of General Relativity. It describes the field

caused, outside it, by a symmetrically spherical source. We see that there is

a singularity in the metric components at the value r = RS. The parameter

RS, given in Eq.(4.18), is called the Schwarzschild radius. Its value for a

body with the mass of the Sun would be RS ≈ 3 km. For a body with

Earth’s mass, RS ≈ 0.9 cm. For such objects, of course, there exists to real

Schwarzschild radius. It would be well inside their matter distribution, where

Tµν �= 0 and the solution is not valid.

§ 4.8 The above solution has been obtained in the absence of the cosmolog-

ical constant. Its presence would change it to¶

ds2 =

(
1 − 2GM

c2 r
− Λ

3
r2

)
c2dt2 − r2(dθ2 + sin2 θdφ2) − dr2

1 − 2GM
c2 r

− Λ
3
r2

.

(4.21)

¶ See the §96 of R.C. Tolman, Relativity, Thermodynamics and Cosmology, Dover, New
York, 1987.
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If we compare with Eq.(3.53), we find the potential

V = −MG

r
− Λc2r2

6
. (4.22)

Eq.(3.58) would then lead to

d

dt
v = − MG

r2
+ 1

3
Λc2r . (4.23)

We recognize Newton’s law in the first term of the righ-hand side. The extra,

cosmological term has the aspect of a harmonic oscillator but, for Λ > 0,

produces a repulsive force.

§ 4.9 The field, just as in the newtonian case, depends only on the mass

M . At a large distance of any limited source, the field will forget details

on its form and tend to have a spherical symmetry. The interval above is

approximately given, at larges distances, by

ds2 ≈ c2dt2 − dr2 − r2(dθ2 + sin2 θdφ2) − RS

r

(
dr2 + c2dt2

)
. (4.24)

The last term is a correction to the Lorentz metric and the above interval

should be the asymptotic limit, for large values of r, of any field created by

any source of limited size. We see that the Schwarzschild coordinate system

used in (4.20) is “asymptotically Galilean”: Schwarzschild’s spacetime tends

to Minkowski spacetime when r → ∞.

As g0j = 0 in Eq.(3.66), the 3-dimensional space sector induced by (4.20)

will have the interval

dσ2 =
dr2

1 − RS

r

+ r2(dθ2 + sin2 θdφ2) , (4.25)

to be compared with the Euclidean interval

dσ2 = dr2 + r2(dθ2 + sin2 θdφ2) . (4.26)

At fixed θ and φ, that is, radially, the distance between two points P and

Q standing outside the Schwarzschild radius will be∫ Q

P

dr√
1 − RS

r

> rQ − rP . (4.27)
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On the other hand, the proper time will be

dτ =
√

g00 dt =

√
1 − RS

r
dt < dt . (4.28)

We see that dτ = dt when r → ∞. And we see also that, at finite distances

from the source, time “marches slower” than time at infinity. This difference

between proper time and coordinate time arrives at an extreme case near the

Schwarzschild radius.

§ 4.10 We can make some checking on the results found. Given the metric


1 − RS

r
0 0 0

0 − 1

1−RS
r

0 0

0 0 −r2 0

0 0 0 − r2sin2 θ


 ,

we can proceed to the laborious computation of the Christoffeln and Riemann

components. We find, for example,

R1
212 =

RS

r2 (r − RS)
; R1

313 = − RS

2 r
; R1

414 = − RS sin2 θ

2 r

R2
323 = − RS

2 r
; R2

424 =
(RS − 2 r) sin2 θ

2 r
; R3

434 = − cos2 θ +
RS sin2 θ

r
.

All components of the Ricci tensor vanish, as they should for an exterior,

Tµν = 0 solution. The scalar curvature, of course, vanishes also. This is a

good illustration of the statement made in § 3.25, by which Tµν = 0 implies

Rµν = 0 but not necessarily Rρ
σµν = 0. It is also a good example of a

fundamental point of General Relativity: it is the non-vanishing of Rρ
σµν

that indicates the presence of a gravitational field.

§ 4.11 We can, furthermore, examine the space section. With coordinates

(r, θ, φ), the metric is 


1

1−RS
r

0 0

0 r2 0

0 0 r2 sin2 θ


 .
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The Christoffeln form the matrices

(Γ1
ij) =




RS

2r(RS−r)
0 0

0 RS − r 0

0 0 (RS − r) sin2 θ




(Γ2
ij) =


 0 1

r
0

1
r

0 0

0 0 − sin θ cos θ




(Γ3
ij) =


 0 0 1

r

0 0 cot θ
1
r

cot θ 0


 .

The Ricci tensor is given by

(Rij) =




RS

r2(RS−r)
0 0

0 RS

2r
0

0 0 RS sin2 θ
2r


 .

Thus, the Ricci tensor of the space sector is non-trivial. The scalar curvature,

however, is zero.

§ 4.12 Perihelium precession The Hamilton-Jacobi equation (3.17) and

the eikonal equation (3.18) provide, as we have seen, a unified approach to

the trajectories of massive particles and light rays. Let us first examine the

motion of a particle of mass m in the above gravitational field. As angular

momentum is conserved, it will be a plane motion, with constant θ. For

reasons of simplicity, we shall choose the value θ = π/2. With the metric

(4.19), the Hamilton-Jacobi equation gµν(∂µS)(∂νS) = m2c2 acquires the

form(
1 − RS

r

)−1 (
∂S

∂ct

)2

−
(

1 − RS

r

) (
∂S

∂r

)2

− 1

r2

(
∂S

∂φ

)2

− m2c2 = 0 .

(4.29)

The solution is looked for by the Hamilton-Jacobi method described in Sec-

tion 3.9. With some constant energy E and constant angular momentum J ,

we write

S = − Et + Jφ + Sr(r). (4.30)
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This, once inserted in (4.29), gives

Sr =

∫
dr

{
E2

c2

(
1 − RS

r

)−2

−
(

m2c2 +
J2

c2

) (
1 − RS

r

)−1
}1/2

. (4.31)

By the method, r = r(t) is obtained from the equation ∂S
∂E

= constant,

from which comes

ct =
E

mc2

∫
dr(

1 − RS

r

) √(
E

mc2

)2 −
(
1 + J2

m2c2r2

) (
1 − RS

r

) . (4.32)

The trajectory is found from ∂S
∂J

= constant, which gives

φ =

∫
J

r2

dr√
E2

c2
−

(
m2c2 + J2

r2

) (
1 − RS

r

) . (4.33)

This leads to an elliptic integral. We are putting the additive integration

constants, which merely fix the origins of the coordinates ct and φ, equal to

zero.

We should compare the above results with their non-relativistic counter-

parts given in Eqs.(3.108), (3.109). However, in order to calculate the small

corrections given by the theory to the trajectories of the planets turning

around the Sun, it is wiser to make approximations in (4.31) before taking

the derivative ∂S
∂J

. We shall suppose radial distances very large with respect

to the Schwarzschild radius: RS << r. We also change the integration vari-

able to r′ =
√

r2 − rRS (and drop the pirmes afterwards). Writing E
′

for

the non-relativistic energy, we find

Sr =

∫
dr

{
E

′2

c2
+ 2mE

′
+

1

r

(
2m2MG + 4E ′MRS

)
− 1

r2

(
J2 − 3

2
m2c2R2

S

)}1/2

(4.34)

The term in 1/r2 will produce a secular displacement of the orbit perihelium.

The remaining terms cause changes in the relationships between the four-

momentum of the particle and the newtonian ellipse. We shall be interested

only in the perihelium precession. The trajectory is determined by φ + ∂Sr

∂J
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= constant. The variation of Sr in one revolution is, in the approximation

considered,

∆Sr = ∆S(0)
r − 3m2c2R2

S

4J

∂∆Sr

∂J
.

∆S
(0)
r is the closed ellipse case. The variation of the angle φ in one revolution

will be

∆φ = − ∂∆Sr

∂J
.

Taking into account that

− ∂∆S
(0)
r

∂J
= ∆φ(0) = 2 π ,

we find

∆φ = 2π +
3πm2c2R2

S

2J2
= 2π +

6πG2m2M2

c2J2
.

The last piece gives the precession δφ. It is usual to express it in terms of the

ellipse parameters. If the great axis is a and the eccentricity is e, we have

J2

GMm2
= a(1 − e2) .

The perihelium precession is then

δφ =
6πGM

a(1 − e2)c2
.

For the Earth, this is a very small variation: in seconds of arc, 3.8′′ per

century. For Mercury, it is 43.0′′ per century. This is in good agreement with

measurements.

§ 4.13 Light-ray deviation The eikonal equation (3.18) is just the Hamil-

ton-Jacobi equation (3.17) with m = 0. The trajectory will still be given

by Eq.(4.33). The interpretation is, of course, quite another. S is now the

eikonal, the energy E must be replaced by the light frequency ω0, and it is

convenient to introduce a new constant, the impact parameter ρ = Jc/ω0.

Thus,

φ =

∫
dr

r2
√

1
ρ2 − 1

r2

(
1 − RS

r

) . (4.35)
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This gives r = ρ/ cos φ — a straight line passing at a distance ρ of the

coordinate origin — in the non-relativistic case RS = 0. The procedure to

analyse the small corrections due to RS �= 0 is analogous to that used for

m �= 0. We go back to Eq. (4.31),

Sr(r) =
ω0

c

∫
dr

{
r2 (r − RS)−2 − ρ2

(
r2 − rRS

)−1
}1/2

. (4.36)

With the same transformations used previously, this becomes

Sr(r) =
ω0

c

∫
dr

√
1 − ρ2r−2 + 2RSr−1 . (4.37)

Expanding in powers of RSr−1,

Sr ≈ SRS=0
r +

RSω0

c

∫
dr√

r2 − ρ2
= SRS=0

r +
RSω0

c
arccosh

r

ρ
. (4.38)

The deviation undergone by a ray coming from a large distance R down to

a distance ρ and then again to the same distance R will be

∆Sr = ∆SRS=0
r + 2

RSω0

c
arccosh

r

ρ
. (4.39)

To get the variation in the angle φ, it is enough to take the derivative with

respect to J = ρω0/c:

∆φ = −∂∆Sr

∂J
= − ∂∆SRS=0

r

∂J
+ 2

RSR

ρ
√

R2 − ρ2
. (4.40)

The term corresponding to the straight line has ∆φ = π. Taking the asymp-

totic limit R → ∞,

∆φ = π + 2
RS

ρ
. (4.41)

This gives a deviation towards the centre of an angle

δφ = 2
RS

ρ
=

4GM

ρc2
. (4.42)

For a light ray grazing the Sun, this gives δφ = 1.75′′. This effect has been

observed by a team under the leadership of Eddington during the 1919 solar

eclipse, at Sobral. It has been considered the first positive experimental test

of General Relativity.
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§ 4.14 The event horizon We can compare the energy of the particle as

seen by an observer using the Schwarzschild coordinate system with the its

energy as seen in the proper frame. The first is, as previously seen, E = − ∂S
∂t

,

and the second is E0 = − ∂S
∂τ

= mc2. But ∂S
∂t

= ∂τ
∂t

∂S
∂τ

, so that E =
√

g00 mc2,

or

E = mc2

√
1 − RS

r
. (4.43)

Let us examine the case of a particle falling in purely radial motion (θ = 0,

φ = 0, ∴ J = 0) towards the center r = 0. If it starts from a point r0 at

the instant t0, its energy will be E = mc2
√

1 − RS

r0
. At a moment t and a

distance r, Eq.(4.32) gives

c(t − t0) =

√
1 − RS

r0

∫ r0

r

dr′(
1 − RS

r′

) √
RS

r′ − RS

r0

. (4.44)

This coordinate time diverges when r → RS. Seen from an external observer,

the particle will take an infinite time to arrive at the Schwarzschild radius.

On the other hand, we can calculate the proper interval of time for the same

thing to happen: it will be

c(τ − τ0) =

∫ r0

r

ds =

∫ r0

r

dr′

√
g00c2

(
dt

dr′

)2

+ g11 .

From (4.44),

dt

dr
= −

√
1 − RS

r0

dr(
1 − RS

r

) √
RS

r
− RS

r0

∴ g00c
2

(
dt

dr

)2

+ g11 =
1

RS

r
− RS

r0

.

Thus,

c(τ − τ0) =

∫ r0

r

dr′√
RS

r′ − RS

r0

. (4.45)

This is a convergent integral, giving a finite value when r → RS. The

particle, looking at things from its own proper frame and measuring time in
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its own clock, arrives at the Schwarzschild radius in a finite interval of time.

It will even arrive at the center r = 0 in finite time.

Suppose now a gas of particles, each one in the conditions above. They

will all fall towards the center. Each will do it in a finite interval of time in

its own frame. The gas will eventually colapse. A quite distinct picture will

be seen from the coordinate, asymptotically flat frame. Seen from a distant

observer, the particles will never actually traverse the Schwarzschild radius.

All that happens inside the Schwarzschild sphere lies “beyond the infinity of

time”. The sphere is a horizon, technically called an event horizon.

We have seen (in § 3.37 and ensuing paragraphs) how coordinate time

and proper time are related. Here we have an extreme difference, given by

Eq.(4.28). Consider a light source near the Schwarzschild radius. Seen from

a distant observer, it will be strongly red-shifted. It will actually be more

and more red-shifted as the source is closer and closer to the radius. The

red-shift will tend to infinity at the radius itself: the external observer cannot

receive any signal from the sphere surface.

§ 4.15 In consequence of all that has been said, a massive object can even-

tually fall inside its own Schwarzschild sphere. In a real star, such a gravi-

tational colapse is kept at bay by the centrifugal effects of pressure caused

by the energy production through nuclear fusion. A massive enough star black
hole

can, however, collapse when its energy sources are exhausted. Once inside

the radius, no emission will be able to scape and reach an external observer.

Particles and radiation will go on falling down to the sphere, but nothing will

get out. Such a collapsed object, such a black hole, will only be observable by

indirect means, as the emission produced by those external particles which

are falling down the gravitational field.

§ 4.16 It should be said, however, that the singularity in the components

of the metric does not imply that the metric itself, an invariant tensor, be

singular. A real singularity must be independent of coordinates and should

manifest itself in the invariants obtained from the metric. For example, the

determinant is an invariant. It is g = − r4 sin2 θ. This shows that the point

r = 0 is a real singularity, in which the metric is no more invertible. The

Schwarzschild sphere, however, is not. It is, as seen, an event horizon, but
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not a singularity. This seems to have been first noticed by Lemâıtre in 1938,

and can be verified by transforming to other coordinate systems. Take for

instance the family of transformations

ct′ = ±ct ±
∫

f(r)dr

1 − RS

r

; r′ = ct +

∫
dr

(1 − RS

r
)f(r)

, (4.46)

involving an arbitrary function f(r) and which lead to

ds2 =
1 − RS

r

1 − f(r)2
(c2dt

′2 − f 2dr
′2) − r2(dθ2 + sin2 θdφ2) .

The Schwarzschild singularity will disappear for an f such that f(RS

r
) = 1.

The better choice is f(r) =
√

RS

r
, which gives a synchomous system. Notice

that there are two possible choices of the signs in (4.46). One leads to an

expanding reference system, the other to a contracting frame. In effect, the

upper signs in (4.46) give

r′ − ct′ =

∫
dr

(1 − f(r)2)

(1 − RS

r
)f(r)

=

∫
dr

f(r)
=

∫
dr

r

RS

=
2r3/2

R
1/2
S

.

This shows that the system contracts in the old system:

r = R
1/3
S

[
3

2
(r′ − ct′)

]2/3

. (4.47)

As r ≥ 0, r′ ≥ ct′, the equality corresponding to the center real singularity.

The singularity would correspond to the value

3

2
(r′ − ct′) = RS .

The interval takes the form given by Lemâıtre
Lemâıtre

line
element

I

ds2 = c2dt
′2 − dr

′2[
3

2RS
(r′ − ct′)

]2/3
−

[
3

2
(r′ − ct′)

]4/3

R
2/3
S (dθ2 + sin2 θdφ2) .

(4.48)

The Schwarzschild singularity does not turn up. To get a feeling, we can use

Eq.(4.47) to rewrite the interval in mixed coordinates:

ds2 = c2dt
′2 − RS

r
dr

′2 − r2(dθ2 + sin2 θdφ2) . (4.49)
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Figure 4.1: In Lemâıtre coordinates, a particle can go through the

Schwarzschild radius in a finite amount of time. The cones become narrower

as r′ decreases.

By Eq.(4.47), to each value r = constant in the old coordinates corre-

sponds a straight line r′ = a + ct′ in the new system (see Figure 4.1). These

lines indicate, consequently, immobile particles in the old reference frame.

Lemâıtre’s system is synchonous (§ 3.44). Geodesics are represented by

vertical lines, as the dashed line in the diagram. A free particle can fall

through the Schwarzschild radius and attain the center at r = 0.

Light cones have an interesting behavior. Consider a radial (dθ = 0, dφ =

0) light ray. Equation (4.49) gives, for ds = 0, the two (future and past)

cones, one for each sign in

c
dt′

dr′
= ±

√
RS

r
. (4.50)

We see that the cone solid angle becomes smaller for smaller values of r.

Consider again the lines r = constant, indicating immobility in the original

system of coordinates. Their inclination is c dt′

dr′ = 1, and there are two

possibilities:

for r > RS, then
∣∣c dt′

dr′

∣∣ < 1: a line r = constant through the vertex lies

inside the cone; immobility is consequently causally possible;
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for r < RS, then
∣∣c dt′

dr′

∣∣ > 1: a line r = constant through the vertex lies

outside the cone; immobility is causally impossible; any particle will

fall to the center.

The cones defined in (4.50) have one more curious behavior: they will deform

themselves progressively as they approach the center. The derivative becomes

infinite at r = 0. The lines representing the cones in the Figure will meet

the line r = 0 as vertical lines.

If we choose the lower signs in (4.46), the line element will be (4.48), but

with t′ → − t′:
Lemâıtre

line
element

II

ds2 = c2dt
′2 − dr

′2[
3

2RS
(r′ + ct′)

]2/3
−

[
3

2
(r′ + ct′)

]4/3

R
2/3
S (dθ2 + sin2 θdφ2) .

(4.51)

An analogous discussion can be done concerning the behavior of cones and

the issue of immobility. Immobility is still forbidden inside the radius. The

difference is that, instead of falling fatally towards the center, a particle will

inexorably draw away from it. Contrary to the previous case, the system

expands in the old system:

r = R
1/3
S

[
3

2
(r′ + ct′)

]2/3

. (4.52)

§ 4.17 A reference frame is complete when the world line of every particle

either go to infinity or stop at a true singularity. In this sense, neither of the

above coordinate systems is complete. The Schwarzschild coordinates do not

apply to the interior of the sphere. An outside particle in the contracting

Lemâıtre system can only fall down towards the centre: initial conditions

in the opposite sense are not allowed. Just the contrary happens in the

expanding Lemâıtre systems. Both leave some piece of space unattainable.

That a complete system of coordinates does exist was first shown by Kruskal

and Fronsdal. We shall here only mention a few aspects of this question.‖

In such kind of system no singularity at all appears in the Schwarzschild

radius. The coordinates are given as implicit functions of those used above.
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In a form given by Novikov, the metric is looked for in a form generalizing
Novikov

line
element

the mixed-coordinate interval (4.49). New time and radial variables τ, R are

defined so as to put the line element in the form

ds2 = c2dτ 2 −
[
1 +

R2
S

R2

]
dr2 − r2(τ, R)(dθ2 + sin2 θdφ2) (4.53)

and supposing a dust gas as source. The coordinates τ, R are given implicitly

and in parametric form by

r =
RS

2

[
1 +

R2
S

R2

]
(1 − cos η); (4.54)

τ =
RS

2

[
1 +

R2
S

R2

]3/2

(π − η + sin η). (4.55)

The parameter η take values in the interval 2π, 0. When it runs from 2π to

0 the time variable increases monotonically, while r increases from zero up

to a maximum value

r = RS

[
1 +

R2
S

R2

]
(4.56)

and then decreases back to zero. The Kruskal diagram of Figure 4.2 suma- Kruskal
diagram

rizes the whole thing. Coordinates τ, R are complete, so that all situations

are described. The Schwarzschild coordinates describe only situations exter-

nal to the line r = RS. Contracting Lemâıtre coordinates cover the shaded

area, expanding coordinates cover the domain which appears shaded after

specular vertical reflection. The small arrows indicate the forcible sense par-

ticles follow inside the Schwarzschild sphere: contracting in the upper side,

expanding in the lower one.

We have seen in § 3.17 that dust particles follow geodesics. The system is

synchronous (§ 3.44), so that such geodesics are the vertical lines R =constant

in the diagram. An example is shown as a dashed line. Starting at τ = 0

‖ Details are given in an elegant form in L.D. Landau & E.M. Lifshitz, Théorie des
Champs, 4th french edition, § 103.
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r 
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 R
S

r = R
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 0

1

2

3

R

τ

Figure 4.2: Kruskal diagram.

(point 1 in the Figure), a particle attains the center r = 0 in a finite time

τ =
πRS

2

[
1 +

R2
S

R2

]3/2

. (4.57)

Starting with outward initial conditions at the center, a situation correspond-

ing to the lower part of the diagram, a particle will follow a trajectory like

the dashed line. It will cross the Schwarzschild radius in the outward direc-

tion, attain a maximal coordinate distance given by (4.56) at τ = 0 (point

1 again), and then fall back, crossing the Schwarzschild radius in an inward

progression at point 2 and reaching the center at point 3.
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4.3 Large Scale Solutions

§ 4.18 Two of the four fundamental interactions of Nature — the weak and

the strong — are of very short range. Electromagnetism has a long range

but, as opposite charges attract each other and tend thereby to neutral-

ize, the field is, so to speak, ”compensated” at large distances. Gravitation

remains as the only uncompensated field and, at large scales, dominates.

This is why Cosmology is deeply involved with it. We shall now examine

two of the main solutions of Einstein’s equations which are of cosmologi-

cal import. The Friedmann solution provides the background for the so-

called Standard Cosmological Model, which — despite some difficulties — Standard
model

gives a good description of the large-scale Universe during most of its evo-

lution. It represents a spacetime where time, besides being separated from

space, is position–independent, and space is homogeneous and isotropic at

each point. The Universe “begins” with a high-density singularity (the “big-

bang”) and evolves through two main periods, one radiation-dominated and

another matter-dominated, which lasts up to present time. There are dif-

ficulties both at the beginning and at present time. The first problem is

mainly related to causality, and could be solved by a dominant cosmological

term. The second comes from the recent observation that a cosmological

term is, even at present time, dominant. It is consequently of interest to

examine models in which the cosmological term gives the only contribution.

These are the de Sitter universes, which have an additional theoretical ad-

vantage: all calculation are easily done. A more detailed account of both the

Friedmann and the de Sitter solutions, mainly concerned with cosmological

aspects, can be found in the companion notes Physical Cosmology.

4.3.1 The Friedmann Solutions

§ 4.19 We have seen under which conditions the second term in the interval

ds2 = g00dx0dx0 + gijdxidxj represents the 3-dimensional space. We shall

suppose g00 to be space–independent. In that case, the coordinate x0 can be

chosen so that the time piece is simply c2dt2, where t will be the coordinate

time. It will be a “universal time”, the same at every point of space.

The “Universe”, that is, the space part, is supposed to respect the Cos-
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mological Principle, or Copernican Principle: it is homogeneous as a whole.

Homogeneous means looking the same at each point. Once this is accepted,

imposing isotropy around one point (for instance, that point where we are) is

enough to imply isotropy around every point. This means in particular that

space has the same curvature around each point. There are only 3 kinds of

3–dimensional spaces with constant curvature:

• the sphere S3, a closed space with constant positive curvature;

• the open hyperbolic space S2,1, or (a pseudo–sphere, or sphere with

imaginary radius), whose curvature is negative; and

• the open euclidean space E
3 of zero curvature (that is, flat).

These three types of space are put together with the help of a parameter

k: k = +1 for S3, k = −1 for S2,1 and k = 0 for E
3. The 3–dimensional line

element is then, in convenient coordinates,

dl2 =
dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdφ2 . (4.58)

The last two terms are simply the line element on a 2-dimensional sphere S2

of radius r — a clear manifestation of isotropy. Notice that these symmetries

refer to space alone. The “radius” can be time-dependent.

§ 4.20 The energy content is given by the energy-momentum of an ideal

fluid, which in the Standard Model is supposed to be homogeneous and

isotropic:

Tµν = (p + ρc2) UµUν − p gµν . (4.59)

Here Uµ is the four-velocity and ρ = ε/c2 is the mass equivalent of the energy

density. The pressure p and the energy density are those of the matter (visible

plus “dark”) and radiation. When p = 0, the fluid reduces to “dust”.

§ 4.21 We can now put together all we have said. Instead of a time–

dependent radius, it is more convenient to use fixed coordinates as above,
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and introduce an overall scale parameter a(t) for 3–space, so as to have the

spacetime line element in the form

ds2 = c2dt2 − a2(t)dl2. (4.60)

Thus, with the high degree of symmetry imposed, the metric is entirely fixed
Friedmann
Robertson

Walker
interval

by the sole function a(t). The spacetime line element will be

ds2 = c2dt2 − a2(t)

[
dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdφ2

]
. (4.61)

This is the Friedmann–Robertson–Walker line element.

§ 4.22 The above line element is a pure consequence of symmetry consid-

erations. We have now to impose the dynamical equations. Recent data,

as said, point to a non-vanishing cosmological constant. It is, consequently,

wiser to use the Einstein equations in the form (3.42). The extreme sim-

plicity of the model is reflected in the fact that those 10 partial differential

equations reduce to 2 ordinary differential equations (in the variable t) for

the scale parameter.

In effect, once (4.59) is used, the field equations (3.42) reduce to the two

Friedmann equations for a(t): Friedmann
equations

ȧ2 =

[
2

(
4πG

3

)
ρ +

Λc2

3

]
a2 − kc2 ; (4.62)

ä =

[
Λc2

3
− 4πG

3

(
ρ +

3p

c2

)]
a(t) . (4.63)

It will be convenient to absorb the length dimensionality in a(t), so that the

variable r can be seen as dimensionless. The cosmological constant has the

dimension (length)−2. The second equation determines the concavity of the

function a(t). This has a very important qualitative consequence when Λ

= 0. In that case, for normal sources with ρ > 0 and p ≥ 0, ä is forcibly Big
Bang

negative for all t and the general aspect of a(t) is that of Figure 4.3. It will

consequently vanish for some time tinitial. Distances and volumes vanish at

that time and densities become infinite. This moment tinitial is taken as the
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beginning, the “Big Bang” itself. It is usual to take tinitial as the origin of

the time coordinate: tinitial = 0. If Λ > 0, there is a competition between

the two terms. It may even happen that the scale parameter be �= 0 for all

finite values of t.

1.2 1.4 1.6 1.8 2 2.2 2.4 t

4.5

5

5.5

6

6.5

7

a

Figure 4.3: Concavity of a(t) for Λ = 0.

Combining both Friedmann equations, we find

dρ

dt
= − 3

ȧ

a

(
ρ +

p

c2

)
, (4.64)

which is equivalent to

d

da
(εa3) + 3 p a2 = 0. (4.65)

This equation reflects the energy–momentum conservation: it can be alter-

natively obtained from T µν
;ν = 0.

§ 4.23 It is convenient to introduce the Hubble function
Hubble
function

&
constant

H(t) =
ȧ(t)

a(t)
=

d

dt
ln a(t) , (4.66)

whose present-day value is the Hubble constant

H0 = 100 h km s−1 Mpc−1 = 3.24 × 10−18 h s−1 .
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The parameter h, of the order of unity, encapsulates the uncertainty in

present-day measurements, which is large (0.45 ≤ h ≤ 1). Another func-

tion of interest is the deceleration

q(t) = − äa

ȧ2
= − ä

ȧH(t)
= − 1

H2(t)

ä

a
. (4.67)

Equivalent expressions are

Ḣ(t) = − H2(t) (1 + q(t)) ;
d

dt

1

H(t)
= 1 + q(t) . (4.68)

Uncertainty is very large for the deceleration parameter, which is the present–

day value q0 = q(t0). Data seem consistent with q0 ≈ 0. Notice that we are

using what has become a standard notation, the index “0” for present-day

values: H0 for the Hubble constant, t0 for present time, etc.

The Hubble constant and the deceleration parameter are basically inte-

gration constants, and should be fixed by initial conditions. As previously

said, the present–day values are used.

§ 4.24 The flat Universe Let us, as an exercise, examine in some detail

the particular case k = 0. The Friedmann–Robertson–Walker line element is

simply

ds2 = c2dt2 − a2(t)dl2 , (4.69)

where dl2 is the Euclidean 3-space interval. In this case, calculations are

much simpler in cartesian coordinates. The metric and its inverse are

(gµν) =




1 0 0 0

0 −a2(t) 0 0

0 0 −a2(t) 0

0 0 0 −a2(t)


 ;

(gµν) =




1 0 0 0

0 −a−2(t) 0 0

0 0 −a−2(t) 0

0 0 0 −a−2(t)


 .
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In the Christoffel symbols
◦
Γα

βν , the only nonvanishing derivatives are those

with respect to x0. Consequently, only Christoffel symbols with at least one

index equal to 0 will be nonvanishing. For example,
◦
Γk

ij= 0. Actually, the

only Christoffels �= 0 are:

◦
Γk

0j = δk
j

1

c

ȧ

a
;

◦
Γ0

ij = δij
1

c
a ȧ.

The nonvanishing components of the Ricci tensor are

R00 = − 3

c2

ä

a
= 3

H2(t)

c2
q(t) ;

Rij =
δij

c2
[aä + 2ȧ2] =

δij

c2
a2H2(t)[2 − q(t)] .

In consequence, the scalar curvature is

R = g00R00 + gijRij = − 6

[
ä

c2a
+

(
ȧ

ca

)2
]

= 6
H2(t)

c2
[q(t) − 1] .

The nonvanishing components of the Einstein tensor Gµν =Rµν − 1
2

Rgµν are

G00 = 3

(
ȧ

ca

)2

; Gij = − δij

c2
[ȧ2 + 2aä] .

Let us consider the sourceless case with cosmological constant. The Einstein

equations are then

G00 − Λg00 = 3

(
ȧ

ca

)2

− Λ = 0 ; Gij − Λgij = − δij

c2
[ȧ2 + 2aä − Λa2] = 0 .

Subtracting 3 times one equation from the other, we arrive at the equivalent

set

ȧ2 − Λc2

3
a2 = 0 ; ä − Λc2

3
a = 0 . (4.70)

These equations are (4.62) and (4.63) for the case under consideration. Of

the two solutions, a(t) = a0e
±H0(t−t0), only

a(t) = a0 eH0(t−t0) = a0 e

√
Λc2

3
(t−t0) (4.71)
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would be consistent with expansion. Expansion is a fact well established

by observation. This is enough to fix the sign, and the model implies an

everlasting exponential expansion. Notice that the scalar curvature is R =

− 4Λ, as is always the case in the absence of sources. Equation (4.71) is

actually a de Sitter solution. The quick growth has been called “inflation”

and is supposed to have taken place in the very early history of the Universe.

§ 4.25 Thermal History The present–day content of the Universe consists

of matter (visible or not) and radiation, the last constituting the cosmic mi-

crowave background. The energy density of the latter is very small, much

smaller than that of visible matter alone. Nevertheless, it comes from the

equations of state that radiation energy increases faster than matter energy

with the temperature. Thus, though matter dominates the energy content

of the Universe at present time, this dominance ceases at a “turning point”

time in the past. At that point radiation takes over. At about the same time,

hydrogen — the most common form of matter — ionizes. The photons of

the background radiation establish contact with the electrons and the whole

system is thermalized. Above that point, there exists a single temperature.

And, above the turning point, the dominating photons increase progressively

in number while their concentration grows by contraction. The opportunity

for interactions between them becomes larger and larger. When they ap-

proach the mass of an electrons, pair creation sets up as a stable process.

Radiation is now more than a gas of photons: it contains more and more

electrons and positrons. Concomitantly, nucleosynthesis stops. As we insist

in going up the temperature ladder, the photons, which are more and more

energetic, break the composite nuclei. The nucleosynthesis period is the most

remote time from which we have reasonably sure information nowadays.

The Standard model starts from present-day data and moves to the past,

taking into account the changes in the equations of state. It goes conse-

quently from a matter-dominated era through the time of hydrogen recom-

bination, then to the changeover period in the which radiation establishes

its dominance. These successive “eras”, the so-called “thermal history” of

the Universe, is analysed in the text Physical Cosmology. We shall here only

examine the de Sitter solutions — also of fundamental cosmological interest
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— because, by their simplicity, they give a beautiful example in which all

calculation can be done without much ado.

4.3.2 de Sitter Solutions

§ 4.26 de Sitter spacetimes are hyperbolic spaces of constant curvature.

They are solutions of vacuum Einstein’s equation with a cosmological term.

There are two different kinds of them: one with positive scalar Ricci curva-

ture, and another one with negative scalar Ricci curvature. As the calcula-

tions are remarkably simple, we shall give a fairly detailed account.

We shall denote by R the de Sitter pseudo-radius, by ηαβ (α, β, · · · =

0, 1, 2, 3) the Lorentz metric of the Minkowski spacetime, and ξA (A, B, . . . =

0, . . . , 4) will be the Cartesian coordinates of the pseudo-Euclidean 5–spaces.

There are two types of spacetime named after de Sitter:

1. de Sitter spacetime dS(4, 1): hyperbolic 4-surface whose inclusion

in the pseudo–Euclidean space E
4,1 satisfy

ηAB ξAξB = ηαβ ξαξβ −
(
ξ4

)2
= −R2 . (4.72)

It is a one-sheeted hyperboloid (a 4-dimensional version of the surface

seen in § 2.65) with topology R1 × S3, and — within our conven-

tions — negative scalar curvature. Its group of motions is the pseudo–

orthogonal group SO(4, 1)

2. anti–de Sitter spacetime dS(3, 2): hyperbolic 4-surface whose in-

clusion in the pseudo–Euclidean space E
3,2 satisfy

ηAB ξAξB = ηαβ ξαξβ +
(
ξ4

)2
= R2 . (4.73)

It is a two-sheeted hyperboloid (a 4-dimensional version of the space

seen in § 2.64) with topology S1 × R3, and positive scalar curvature.

Its group of motions is SO(3, 2)

With the notation η44 = s, both de Sitter spacetimes can be put to-

gether in

ηAB ξAξB = ηαβ ξαξβ + s
(
ξ4

)2
= sR2 , (4.74)

where we have the following relation between s and the de Sitter spaces:
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s = −1 for dS(4, 1)

s = +1 for dS(3, 2).

§ 4.27 The metric Let us find now the line element of the de Sitter spaces.

The most convenient coordinates are the stereographic conformal. The pas-

sage from the Euclidean ξA to the stereographic conformal coordinates xα

(α, β, · · · = 0, 1, 2, 3) is done by the transformation:

ξα = Ωxα ; ξ4 = R(1 − 2Ω), (4.75)

(a sign in the last expression would have no consequence for what follows)

with Ω(x) a function of xα which we shall determine. Two expressions

preparatory to the calculation of the line element can be immediately ob-

tained by taking differentials:

dξα = xαdΩ + Ωdxα , (4.76)

and (
dξ4

)2
= 4R2dΩ2. (4.77)

Let us introduce ρ2 = ηαβ xαxβ and rewrite the defining relation (4.74) as

Ω2ρ2 + s
(
ξ4

)2
= sR2 . (4.78)

Equating (ξ4)
2

got from (4.75) and (4.78), we find

Ω =
1

1 + s ρ2

4R2

. (4.79)

Notice that from this expression it follows that

dΩ = − s
Ω2

2R2
ρdρ = −s

Ω2

4R2
2ηαβ xαdxβ , (4.80)

from which another preparatory result is obtained:

2ηαβ xαdxβ = − s
4R2

Ω2
dΩ . (4.81)

Now, the de Sitter line element is

dΣ2 = ηAB dξAdξB = ηαβ dξαdξβ + s
(
dξ4

)2
,
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or, by using (4.76),

dΣ2 = ηαβ (xαdΩ + Ωdxα)
(
xβdΩ + Ωdxβ

)
+ s

(
dξ4

)2
.

Expanding and using (4.77),

dΣ2 = ηαβxαxβdΩ2 + 2ηαβxαdxβΩdΩ + Ω2ηαβdxαdxβ + s 4R2dΩ2 .

Now, using (4.81),

dΣ2 = Ω2ηαβdxαdxβ +

[
ρ2 − s

4R2

Ω

]
dΩ2 + s 4R2dΩ2 ,

and then (4.79),

dΣ2 = Ω2ηαβdxαdxβ +
[
− s 4R2

]
dΩ2 + s 4R2dΩ2 ,

so that finally

dΣ2 = gαβdxαdxβ , (4.82)

where the metric gαβ is

gαβ = Ω2 ηαβ =
1[

1 + s ρ2

4R2

]2 ηαβ . (4.83)

The de Sitter spaces are, therefore, conformally flat (see § 2.46), with the

conformal factor given by Ω2(x).

§ 4.28 The Christoffel symbol corresponding to a conformally flat metric

gµν with conformal factor Ω2(x) has the form

◦
Γα

βν=
[
δα
β δσ

ν + δα
ν δσ

β − ηβνη
ασ

]
∂σ ln Ω(x) . (4.84)

Taking derivatives in (4.79), we find for the de Sitter spaces

◦
Γα

βσ= − s Ω
2R2

[
δα
βηγσ + δα

σηγβ − ηβσδ
α
γ

]
xγ . (4.85)

The Riemann tensor components can be found by taking the following

steps. First, take the derivative of the de Sitter connection
◦
Γα

βσ:

∂ρ

◦
Γα

βσ= − s Ω
2R2

[
δα
βηγσ + δα

σηγβ − ηβσδ
α
γ

]
δγ
ρ+

◦
Γα

βσ ∂ρ ln Ω
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= − s Ω
2R2

[
δα
βηρσ + δα

σηρβ − ηβσδ
α
ρ

]
− sxρ

2R2Ω

◦
Γα

βσ

= − s Ω
2R2

[
δα
βηρσ + δα

σηρβ − ηβσδ
α
ρ

]
+ xρxγ

4R4

[
δα
βηγσ + δα

σηγβ − ηβσδ
α
γ

]
= − s Ω

2R2

[
δα
βηρσ + δα

σηρβ − ηβσδ
α
ρ

]
+ xρxγ

4R4Ω2

[
δα
βgγσ + δα

σgγβ − gβσδ
α
γ

]
= − s Ω

2R2

[
δα
βηρσ + δα

σηρβ − ηβσδ
α
ρ

]
+ 1

4R4Ω2

[
δα
βxσxρ + δα

σxβxρ − gβσx
αxρ

]
.

Indicating by [ρσ] the antisymmetrization (without any factor) of the in-

cluded indices, we get

∂ρ

◦
Γα

βσ − ∂σ

◦
Γα

βρ= − s Ω
2R2

(
δα
[σηρ]β − ηβ[σδ

α
ρ]

)
+ 1

4R4Ω2

(
xβδα

[σxρ] − xαgβ[σxρ]

)
= − s Ω

R2 δ
α
[σηρ]β + 1

4R4Ω2

(
xβδα

[σxρ] − xαgβ[σxρ]

)
.

This is the contribution of the derivative terms.

The product terms are

◦
Γα

λρ

◦
Γλ

βσ= Ω2

4R4

[
δα
ληγρ + δα

ρ ηγλ − ηλρδ
α
γ

] [
δλ
βηsσ + δλ

σηsβ − ηβσδ
λ
s

]
xγxs;

◦
Γα

λρ

◦
Γλ

βσ −
◦
Γα

λσ

◦
Γλ

βρ = 1
4R4Ω2

[
xβδα

[ρxσ] + xαx[ρgσ]β + Ω2ρ2gβ[ρδ
α
σ]

]
.

A provisional expression for the curvature is, therefore,

◦
Rα

βρσ = ∂ρ

◦
Γα

βσ − ∂σ

◦
Γα

βρ +
◦
Γα

λρ

◦
Γλ

βσ −
◦
Γα

λσ

◦
Γλ

βρ

= − s Ω
R2 δ

α
[σηρ]β + 1

4R4Ω2

(
xβδα

[σxρ] − xαgβ[σxρ]

)
+ 1

4R4Ω2

[
xβδα

[ρxσ] + xαx[ρgσ]β + Ω2ρ2gβ[ρδ
α
σ]

]
.

The first two terms in the last line just cancel the last two in the line above

them. Therefore,

◦
Rα

βρσ = − s Ω
R2 δ

α
[σηρ]β + 1

4R4Ω2 Ω
2ρ2gβ[ρδ

α
σ]

= − s Ω
R2 ηβ[ρδ

α
σ] +

1
4R4 Ω

2ρ2ηβ[ρδ
α
σ]

=
[
− s Ω

R2 + 1
4R4 Ω

2ρ2
]
ηβ[ρδ

α
σ]

= s Ω
R2

[
s

4R2 Ωρ2 − 1
]
ηβ[ρδ

α
σ]
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Using (4.79), we find that the bracketed term is = − Ω. Therefore, we get

◦
Rα

βρσ = − s Ω2

R2 ηβ[ρδ
α
σ] = − s

R2

[
δα
σgβρ − δα

ρ gβσ

]
. (4.86)

The Ricci tensor will be

◦
Rµν = 3 s

R2 gµν (4.87)

and the scalar curvature,

◦
R =

12 s

R2
. (4.88)

The de Sitter spacetimes are spaces of constant curvature. We can now

make contact with the cosmological term. From the expressions above, we

find that

◦
Rµν − 1

2
gµν

◦
R +

3 s

R2
gµν = 0. (4.89)

Thus, the de Sitter spaces are solutions of the sourceless Einstein’s equations

with a cosmological constant

Λ = − 3 s

R2
= −

◦
R /4. (4.90)

Notice the relationships to the de Sitter and the anti-de Sitter spaces:

s = −1 for the de Sitter space dS(4, 1) −→ Λ > 0

s = +1 for the anti-de Sitter space dS(3, 2) −→ Λ < 0 .

§ 4.29 We have said (§ 3.46) that positive scalar curvature tends to make

curves to close to each other, and just the contrary for negative curvature.

The relative sign in (4.90) shows that the cosmological constant has the

opposite effect: Λ > 0 leads to diverging curves, Λ < 0 to converging ones.

This actually depends on the initial conditions. Let us look at the geodetic

deviation equation,

D2Xα

Du2
=

◦
R

α
βρσU

βUρXσ . (4.91)

Using Eq.(4.86),
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D2Xα

Ds2
= − s

R2

[
δα
σgβρ − δα

ρ gβσ

]
UβUρXσ

= − s
R2 [δα

σ − UαUσ] Xσ = − s
R2 hα

σX
σ . (4.92)

We have recognized the transversal projector hα
σ (see § 3.50). By the

geodesic equation, the component of X along U will have vanishing con-

tributions tothe left-hand side. Consequently, only the transversal part X⊥

will appear in the equation, which is now

D2Xα
⊥

Ds2
+ s

R2 Xα
⊥ =

D2Xα
⊥

Ds2
+

◦
R
12

Xα
⊥ =

D2Xα
⊥

Ds2
− Λ

3
Xα

⊥ = 0 . (4.93)

Negative Λ leads to oscillatory solutions. Positive Λ can lead both to con-

tracting and expanding congruences. If two lines are initially separating,

they will separate indefinitely more and more.

§ 4.30 We have been using carefully two coordinate systems. The most

convenient system for cosmological considerations is the so–called comoving

system, in which the Friedmann equations, in particular, have been writ-

ten. In that system the scale parameter appears in its utmost simplicity.

The stereographic coordinates are of interest for de Sitter spaces. We could

perform a transformation between the two systems, but that is not really

necessary: we have only taken scalar parameters from one system into the

other. The only exception, Eq. (4.89), is a tensor which vanishes in a system

and, consequently, vanishes also in the other.

The expression (4.83) for the metric is very different from the original

one. De Sitter has found it in another coordinate system, in the form

ds2 =

(
1 − Λ

3
r2

)
c2dt2 − r2(dθ2 + sin2 θdφ2) − dr2

1 − Λ
3

r2
. (4.94)

This expression is just the Schwarzschild solution in the presence of a Λ

term, Eq.(4.21), when the source mass tends to zero. There are many other

coordinates and metric expressions of interest for different aims.∗∗ One of

them exhibits clearly the inflationary property above discussed:

ds2 = c2dt2 − ect/R (
dx2 + dy2 + dz2

)
. (4.95)

∗∗ A few, included that given below, are given by R.C. Tolman, Relativity, Thermody-
namics and Cosmology, Dover, New York, 1987, § 142.
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Chapter 5

Tetrad Fields

5.1 Tetrads

For each source, set of symmetries and boundary conditions, there will be a
different solution of Einstein’s equations. Each solution will be a spacetime.
It will be interesting to go back and review the general characteristics of
spacetimes. While in the process, we shall revisit some previously given
notions and reintroduce them in a more formal language.

§ 5.1 A spacetime S is a four–dimensional differentiable manifold whose

tangent space (§ 2.24) at each point is a Minkowski space. Loosely speaking,

we implant a Lorentz metric ηab on each tangent space. Bundle language

is more specific: it considers the tangent bundle TS on spacetime, an 8-

dimensional space which is locally the direct product of S and a typical

fibre representing the tangent space. For a spacetime, the typical fiber is

the Minkowski space M . The fiber is “typical” because it is an “ideal” (in

the platonic sense) Minkowski space. The relationship between the typical

Minkowski fiber and the spaces tangent to spacetime is established by tetrad

fields (see Figure 5.1). A tetrad field will determine a copy of M on each

tangent space. M is considered not only as a flat pseudo-Riemannian space,

but as a vector space as well. We are going to use letters of the latin alphabet,

a, b, c, . . . = 0, 1, 2, 3, to label components on M , and those of the greek

alphabeth, µ, ν, ρ, . . . = 0, 1, 2, 3 for spacetime components. The first will be

called “Minkowski indices”, the latter “Riemann indices”.
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§ 5.2 We shall need an initial vector basis in M . We take the simplest one,

the standard “canonical” basis

K0 = (1, 0, 0, 0) K1 = (0, 1, 0, 0)

K2 = (0, 0, 1, 0) K3 = (0, 0, 0, 1) .

Each Ka is given by the entries (Ka)b = δab. Each tetrad field h will be a

mapping

h : M → TS, h(Ka) = ha .

The four vectors ha will constitute a vector basis on S. Actually, this is a

T  Sp

p

x

x<    >- 1

<    >- 1h

xa Ka

U(α}

xa
ahX = h 

k

jjK

kK

Minkowski
    space

ideal

h (tetrad)

h 

S = spacetime

tangent Minkowski  space

Figure 5.1: The role of a tetrad field.

local affair: given a point p ∈ S, and around it an euclidean open set U ,

the ha will constitute a vector basis not only for the tangent space to S at

p, denoted TpS, but also for all the TqS with q ∈ U . The extension from p
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to U is warranted by the differentiable structure. The dual forms hb, such

that hb(ha) = δb
a, will constitute a vector basis on the cotangent space at

p, denoted TpS
∗. The dual base {ha} can be equally extended to all the

points of U . For example, each coordinate system {xµ} on U will define a

“natural” vector basis {∂µ = ∂/∂xµ}, with its concomitant covector dual

basis, {dxµ}. This is a very particular and convenient tetrad field, frequently

called a “trivial” tetrad, given by ea = e(Ka) = δa
µ∂µ. It is usual to fix a

coordinate system around each point p from the start, and in this sense this

basis is indeed “natural”.

Another tetrad field, as the above generic {ha} and its dual {hb}, can be

written in terms of {∂µ} as

ha = ha
µ ∂µ and hb = hb

ν dxν , (5.1)

with

hb
µ ha

µ = δb
a and ha

µ ha
ν = δµ

ν . (5.2)

The components ha
µ(x) have one label in Minkowski space and one in space-

time, constituting a matrix with the inverse given by ha
µ(x). It is usual to

designate the tetrad by the sets {ha
µ(x)} or {ha

µ}, but their meaning should

be clear: they represent the components of a general tetrad field in a natural

basis previously chosen.

§ 5.3 The tetrad Minkowski labels are vector indices, changing under Lor-

entz transformations according to

ha′
= Λa′

b hb , (5.3)

or, in terms of components,

ha′
µ(x) = Λa′

b(x) hb
µ(x) . (5.4)

For each tangent Minkowski space, Λa′
b is constant. It will, however,

depend on the point of spacetime, which we indicate by its coordinates x

= {xµ}. This is better seen if we contract the last expression above with
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hc
µ(x), to obtain the Lorentz transformation in terms of the initial and final

tetrad basis:

Λa′
b(x) = ha′

µ(x) hb
µ(x) . (5.5)

Equation (5.4) says that each tetrad component behaves, on each Minkowski

fiber, as a Lorentz vector. For each fixed Riemann index µ, ha
µ transforms

according to the vector representation of the Lorentz group. A Lorentz (ac-

tually, co-)vector on a Minkowski space has components transforming, under

a Lorentz transformation with parameters αcd, as

φa′
= Λa′

b(x) φb =
[
exp

(
i
2
αcdJcd

)]
a′

b φb . (5.6)

Here, each Jcd is a 4 × 4 matrix representing one of the Lorentz group gen-

erators:

[Jcd]
a′

b = i
(
ηcbδ

a′
d − ηdbδ

a′
c

)
. (5.7)

This means also that, for each fixed Riemann index µ, the ha
µ’s constitute a

Lorentz basis (or frame) for M .

§ 5.4 A tetrad field converts tensors on M into tensors on spacetime, trans-

literating one index at a time. A general Lorentz tensor T , transforming

according to

T a′b′c′... = Λa′
aΛ

b′
bΛ

c′
c . . . T abc... ,

will satisfy automatically T a′b′c′... = ha′
µh

b′
νh

c′
ρ . . . T µνρ..., which shows how

tetrad fields can “mediate” Lorentz transformations. As an example of that

transmutation, a tetrad will produce a field on spacetime out of a vector in

Minkowski space by

φµ(x) = ha
µ(x) φa(x) . (5.8)

As the tetrad, in its Minkowski label, transforms under Lorentz transfor-

mation as a vector should do, φµ(x) is Lorentz–invariant. Another case of

“tensor transliteration” is

Λµ
ν(x) = ha′µ(x) Λa′

b(x) hb
ν(x) = δµ

ν (5.9)
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[using (5.5)]. Thus, there is no Lorentz transformation on spacetime itself.

The Minkowski indices — also called “tetrad indices” — are lowered by

the Lorentz metric ηab:

haσ = ηabh
b
σ .

An important consequence is that the Lorentz metric ηab is transmuted into

the Riemannian metric

gµν = ηab ha
µ hb

ν . (5.10)

Of course, also gµν (as any component of a spacetime tensor) is Lorentz–

invariant. Here, given ηab, the tetrad field defines the metric gµν . Differ-

ent tetrad fields transmute the same ηab into different spacetime pseudo-

Riemannian metrics.

§ 5.5 The members of a general tetrad field {ha}, as vector fields, will satisfy

a Lie algebra (see § 2.34) with a commutation table

[ha, hb] = cc
ab hc . (5.11)

The structure coefficients cc
ab measure its anholonomicity — they are some-

times called “anoholonomicity coefficients” — and are given by

cc
ab = [ha(hb

µ) − hb(ha
µ)] hc

µ . (5.12)

If {ha} is holonomous, cc
ab = 0, then ha = dxa for some coordinate system

{xa}, and

dxa′
= Λa′

b dxb .

Expression (5.10) would, in that holonomic case, give just the Lorentz metric

written in another system of coordinates. This is the usual choice when we

are interested only in Minkowski space transformations, because then Λa′
b

= ∂xa′
/∂xb. In this case the tetrad components can be identified with the

Lamé coefficients of coordinate transformations, and the metric gµν will be

the Lorentz metric written in a general coordinate system.

We have up to now left quite indefinite the choice of the tetrad field

itself. In fact its choice depends on the physics under consideration. Trivial

tetrads are relevant when only coordinate transformations are considered.

A non–trivial tetrad reveals the presence of a gravitational field, and is the

fundamental tool in the description of such a field.
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5.2 Linear Connections

Let us examine, in a purely descroptive way, the transformation properties
of a linear connection. A linear connection is a 1-form with values in the
linear algebra, that is, the Lie algebra of the linear group GL(4, R) of all
invertible real 4 × 4 matrices. This means a matrix of 1-forms. A Lorentz
connection is a 1-form with values in the Lie algebra of the Lorentz group,
which is a subgroup of GL(4, R). All connections of interest to gravitation
(the Levi-Civita in particular) are ultimately linear connections.

5.2.1 Linear Transformations

§ 5.6 A linear transformation of N variables xr is an invertible transforma-

tion of the type

xr′ = M r′
s xs . (5.13)

In this case (M r′
s) is an invertible matrix. Linear transformations form

groups, which include all the groups of matrices. The set of invertible N ×N

matrices with real entries constitutes a group, called the real linear group

GL(N, R).

§ 5.7 Consider the set of N ×N matrices. This set is, among other things, a

vector space. The simplest of such matrices will be those ∆α
β whose entries

are all zero except for that of the α-th row and β-th column, which is 1:

(∆α
β)δ

γ = δδ
α δβ

γ . (5.14)

An arbitrary N × N matrix K can be written K = Kα
β ∆α

β.

The ∆α
β’s have one great quality: they are linearly independent (none

can be written as linear combinations of the other). Thus, the set {∆α
β}

constitutes a basis (the “canonical basis”) for the vector space of the N ×N

matrices. An advantage of this basis is that the components of a matrix K

as a vector written in basis {∆α
β} are the very matrix elements: (K)α

β =

Kα
β.

§ 5.8 Consider now the product of matrices: it takes each pair (A, B) of ma-

trices into another matrix AB. In our notation, matrix product is performed
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coupling lower–right indices to higher–left indices, as in(
∆α

β ∆φ
ξ
)δ

ε =
(
∆α

β
)δ

γ

(
∆φ

ξ
)γ

ε = δβ
φ

(
∆α

ξ
)δ

ε , (5.15)

where in (∆α
β)δ

γ, γ is the column index.

The structure of vector space (§ 2.20) includes an addition operation and

its inverse, subtraction. Once the product is given, another operation can be

defined by the commutator [A, B] = AB −BA, the subtraction of two prod-

ucts. The Lie algebra of the N ×N real matrices with the operation defined

by the commutator is called the real N -linear algebra, denoted gl(N, R). The

set {∆α
β} is called the canonical base for gl(N, R). A Lie algebra is sum-

marized by its commutation table. For gl(N, R), the commutation relations

are [
∆α

β, ∆φ
ζ
]

= f(α
β )(φ

ζ )
(δ
γ) ∆γ

δ . (5.16)

The constants appearing in the right-hand side are the structure coefficients,

whose values in the present case are

f(α
β )(φ

ζ )
(δ
γ) = δφ

β δα
γ δδ

ζ − δα
ζ δφ

γ δδ
β . (5.17)

The choice of index positions may seem a bit awkward, but will be convenient

for use in General Relativity. There, linear connections Γα
βµ and Riemann

curvatures Rα
βµν will play fundamental roles. These notations are quite well–

established. Now, a linear connection is actually a matrix of 1-forms Γ =

∆α
βΓα

β, with the components Γα
β being usual 1-forms, just Γα

βµdxµ. The

first two indices refer to the linear algebra, the last to the covector character

of Γ. A Riemann curvature is a matrix of 2-forms, R = ∆α
βRα

β, where each

Rα
β is an usual 2-form Rα

β = 1
2
Rα

βµνdxµ ∧ dxν . In both cases, we talk of

“algebra–valued forms”. In consequence, the notation we use here for the

matrices seem the best possible choice: in order to have a good notation for

the components one must sacrifice somewhat the notation for the base.

The invertible N × N matrices constitute, as said above, the real linear

group GL(N, R). Each member of this group can be obtained as the ex-

ponential of some K ∈ gl(N, R). GL(N, R) is thus a Lie group, of which

gl(N, R) is the Lie algebra. The generators of the Lie algebra are also called,

by extension, generators of the Lie group.
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5.2.2 Orthogonal Transformations

§ 5.9 A group of continuous transformations preserving an invertible real

symmetric bilinear form η (see § 2.44) on a vector space is an orthogonal

group (or, if the form is not positive–definite, a pseudo–orthogonal group).

A symmetric bilinear form is a mapping taking two vectors into a real

number: η(u,v) = ηαβ uαvβ, with ηαβ = ηβα. It is represented by a symmetric

matrix, which can always be diagonalized. Consequently, it is usually pre-

sented in its simplest, diagonal form in terms of some coordinates: η(x, x) =

ηαβxαxβ. Thus, the usual orthogonal group in E
3 is the set SO(3) of rotations

preserving η(x,x) = x2 +y2 +z2; the Lorentz group is the pseudo–orthogonal

group preserving the Lorentz metric of Minkowski spacetime, η(x, x) = c2t2

- x2 - y2 - z2. These groups are usually indicated by SO(η) = SO(r, s), with

(r, s) fixed by the signs in the diagonalized form of η. The group of rotations

in n-dimensional Euclidean space will be SO(n), the Lorentz group will be

SO(3, 1), etc.

§ 5.10 Given the transformation xα′
= Λα′

α xα, to say that “η is preserved”

is to say that the distance calculated in the primed frame and the distance

calculated in the unprimed frame are the same. Take the squared distance in

the primed frame, ηα′β′ xα′
xβ′

, and replace xα′
and xβ′

by their transformation

expressions. We must have

ηα′β′ xα′
xβ′

= ηα′β′ Λα′
α Λβ′

β xαxβ = ηαβ xαxβ , ∀x . (5.18)

This is the group–defining property, a condition on the Λα′
α’s. When η is

an Euclidean metric, the matrices are orthogonal — that is, their columns

are vectors orthogonal to each other. If η is the Lorentz metric, the Λα′
α’s

belong to the Lorentz group. We see that it is necessary that

ηαβ = ηα′β′ Λα′
α Λβ′

β = Λα′
α ηα′β′ Λβ′

β.

The matrix form of this condition is, for each group element Λ,

ΛT η Λ = η , (5.19)

where ΛT is the transpose of Λ.
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§ 5.11 There is a corresponding condition on the members of the group Lie

algebra. For each member A of the algebra, there will exist a group member Λ

such that Λ = eA. Taking Λ = I+A+1
2
A2+. . . and ΛT = I+AT +1

2
(AT )2+. . .

in the above condition and comparing order by order, we find that A must

satisfy

AT = − η−1 A η (5.20)

and will consequently have vanishing trace: tr A = tr AT = - tr (η−1 A η)

= - tr (ηη−1 A) = - tr A ∴ tr A = 0.

§ 5.12 If η is defined on an N -dimensional space, the Lie algebras so(η) of

the orthogonal or pseudo–orthogonal groups will be subalgebras of gl(N, R).

Given an algebra so(η), both basis and entry indices can be lowered and

raised with the help of η. We define new matrices ∆αβ by lowering labels

with η : (∆αβ)δ
γ = δδ

αηβγ. Their commutation relations become

[∆αβ, ∆γδ] = ηβγ ∆αδ − ηαδ ∆γβ . (5.21)

The generators of so(η) will then be Jαβ = ∆αβ - ∆βα, with commutation

relations

[Jαβ, Jγδ] = ηαδJβγ + ηβγJαδ − ηβδJαγ − ηαγJβδ . (5.22)

These are the general commutation relations for the generators of the orthog-

onal or pseudo–orthogonal group related to η. We shall meet many cases in

what follows. Given η, the algebra is fixed up to conventions. The usual

group of rotations in the 3-dimensional Euclidean space is the special or-

thogonal group, denoted by SO(3). Being “special” means connected to the

identity, that is, represented by 3 × 3 matrices of determinant = +1.

The group O(N) is formed by the orthogonal N×N real matrices. SO(N)

is formed by all the matrices of O(N) which have determinant = +1. In

particular, the group O(3) is formed by the orthogonal 3 × 3 real matrices.

SO(3) is formed by all the matrices of O(3) which have determinant = +1.

The Lorentz group, as already said, is SO(3, 1). Its generators have just the

algebra (5.22), with η the Lorentz metric.
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5.2.3 Connections, Revisited

§ 5.13 Suppose we are given the connection by components Γa
bν , the first

two indices being “algebraic” and the last a Riemann index. This supposes a

basis in the linear algebra and a basis of vector fields on the manifold. Taking

the canonical basis {∆a
b} for the algebra, and a holonomic vector basis {dxν}

on the manifold, for example, the connection is given in invariant form by

Γ = 1
2
∆a

b Γa
bν dxν . (5.23)

For reasons which will become clear later, the set of components {Γa
bν} will

be called spin connection.

Connections have been introduced in in Section 2.3 through their behavior

under coordinate tranformations, that is, under change of holonomic tetrads.

We proceed now to a series of steps extending that presentation to general,

holonomic or not, tetrads. First, we (i) change from Minkowski indices to

Riemann indices by

Γa
bν → Γλ

µν = hλ
a Γa

bν hb
µ + hλ

a∂νh
a
µ . (5.24)

This generalizes Eq.(2.33). Then, we (ii) change again through a Lorentz–

transformed tetrad, Γλ
µν → Γa′

b′ν = ha′
λ Γλ

µν hµ
b′ + ha′

λ ∂νh
ρ
b′ , which means

that

Γa′
b′ν = Λa′

a Γa
bν

(
Λ−1

)b
b′ + Λa′

c∂ν

(
Λ−1

)c
b′ . (5.25)

This gives the effect on Γa
bν of a Lorentz transformation Λa′

a = ha′
λ hλ

a. In

the notation adopted, Λa′
a changes V a into V a′

; we can write simply Λc
b′ for

the inverse (Λ−1)c
b′ , understanding that

V c = Λc
b′ V

b′ =
(
Λ−1

)c
b′ V

b′ .

Now, start instead with Γλ
µν , and (iii) change from Riemann indices to

Minkowski indices by

Γλ
µν → Γa

bν = ha
λ Γλ

µν hµ
b + ha

λ ∂νh
λ

b , (5.26)

and (iv) go back to modified Riemann indices by

Γλ′
µ′ν′ = hλ′

a Γa
bν hb

µ′ + hλ′
c ∂νh

c
µ′ .
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Consequently,

Γλ′
µ′ν′ = hλ′

a ha
λ Γλ

µν hµ
b + hλ′

a ha
λ

(
∂νh

λ
b

)
hb

µ′ + hλ′
c ∂νh

c
µ′ ,

or

Γλ′
µ′ν′ = Bλ′

λ Γλ
µν Bµ′

µ′ + Bλ′
λ ∂νB

λ
µ′ . (5.27)

This is the effect of a change of basis given by Bλ′
λ = hλ′

a ha
λ.

§ 5.14 Vector fields transform according to (5.6):

φe′(x) = he′
µ(x)φµ(x) = Λe′

b hb
µ(x) φµ(x) = Λe′

b φb(x) . (5.28)

What happens to their derivatives? Clearly, they transform in another way:

∂λφ
e′ = ∂λ

[
Λe′

b

]
φb + Λe′

b ∂λφ
b .

As the name indicates, the covariant derivative of a given object is a

derivative modified in such a way as to keep, under transformations, just the

same behavior of the object. Here, it will have to obey

D′
λφ

e′ = Λe′
b Dλφ

b . (5.29)

§ 5.15 The way physicists introduce a connection is as a “compensating

field”, an object Γa
bν with a very special behavior whose action on the field,

once added to the usual derivative, produces a covariant result. In the present

case we look for a connection such that

∂λφ
e′ + Γe′

d′λ φd′ = Λe′
b

[
∂λφ

b + Γb
dλ φd

]
.

A direct calculation shows then that the required behavior is just (5.25),

which can be written also as

Γa′
b′ν = Λa′

d

[
δd

c∂µ + Γd
cν

]
Λc

b′ . (5.30)

§ 5.16 As a rule, all indexed objects are tensor components and transform

accordingly. A connection, written as Γa
bν , is an exception: it is tensorial

in the last index, but not in the first two, which change in the peculiar
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way shown above. Any connection transforming in this way will lead to a

covariant derivative of the form

∇µφ
a = ∂µφ

a + Γa
bν φb = he

µ

[
eeφ

a + Γa
be φb

]
. (5.31)

Applied in particular to ha
σ, it gives

∇µh
a
σ = ∂µh

a
σ + Γa

bµ hb
σ ;

applied to its inverse ha
σ,

∇µha
σ = ∂µha

σ − Γb
aµ hb

σ .

It is easily checked that Γa
bµ = i

2
Γcd

µ (Jcd)
a
b, with Jcd given in (5.7). It has

its values in the Lie algebra of the Lorentz group. The spin connetion Γa
bµ

is, for this reason, said to be a Lorentz connection. We can define the matrix

Γµ = i
2
Γa

bµ Ja
b whose entries are Γa

bµ. Then,

∇µφ
a = ∂µφ

a +
i

2
Γcd

µ (Jcd)
a
b φb = [∂µφ + Γµ φ]a .

We find also that

Γλ
νµ = ha

λ Γa
bµ hb

ν + hb
λ ∂µh

b
ν (5.32)

is Lorentz invariant, that is,

ha′λ
[
δa′

b′ ∂µ + Γa′
b′µ

]
hb′

ν = ha
λ [δa

b ∂µ + Γa
bµ] hb

ν .

Notice that the components Γa
bµ and Γλ

νµ refer to different spaces. Equation

(5.32) describes how Γ changes when the algebra indices are changed into

Riemann indices. It should not be confused with (5.25), which relates the

connection components in two Lorentz–related frames.

Comment 5.1 Equation (5.32) is frequently written as the vanishing of a “total covariant
derivative” of the tetrad:

∂λha
µ − Γσ

µλ ha
µ + Γa

cµ hc
µ = 0 .
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§ 5.17 As the two first indices in Γa
bµ are not “tensorial”, the behavior of

Γ is very special. On the other hand, the indices in Jab are tensorial. The

consequence is that the contraction Γµ = i
2
Γab

µJab is not Lorentz invariant.

Actuallly,

Γa′b′
µ Ja′b′ = Λa′

d ∂µΛdb′ Ja′b′ + Γab
µ Jab .

Again, decomposing Λ in terms of the tetrad, we find[
Γa′b′

µ + hb′λ ∂µh
a′

λ

]
Ja′b′ =

[
Γab

µ + hbλ ∂µh
a
λ

]
Jab .

Thus, what is really invariant is

Γµ = 1
2

[
Γab

µ + hbλ ∂µh
aλ

]
Jab . (5.33)

§ 5.18 The “archaic” approach to connections is more intuitive and very

suggestive. It is worth recalling, as it complements the above one. It starts

with the assumption that, under an infinitesimal displacement dxλ, a field

suffers a change which is proportional to its own value and to dxλ. The

proportionality coefficient is an “affine coefficient” Γµ
νλ (an oldish name !),

so that

δφµ(x) = − Γµ
νλ(x) φν(x) dxλ .

If we introduce the entries of the matrix Jab, we verify that this is the same

as

δφµ(x) = − 1
2

Γab
λ(x) (Jab)

µ
ν φν(x) dxλ .

Consequently, the variation in the functional form of φ will be

δ̄φµ(x) = δφµ(x) − ∂λφ
µ(x) dxλ = − ∇λφ

µ(x) dxλ ,

which defines the covariant derivative

∇λφ
µ(x) = ∂λφ

µ(x) + Γµ
νλ φν(x) .

§ 5.19 When ∇λφ
µ = 0, we say that the field is “parallel transported”. In

that case, we have δ̄φµ(x) = 0, or φµ′(x) = φµ(x). In parallel transport,
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the functional form of the field does not change. To learn more on the

meaning of parallel-transport and its expression as ∇λφ
µ = 0, let us look at

the functional variation of the vector field along a curve γ of tangent vector

(velocity) U . It will be the 1-form δ̄φµ(x) applied to the field U = d/ds:

δ̄φµ(x)[U ] = [∂λφ
µ + Γµ

νλ φν ] dxλ[U ] = Uλ ∇λφ
µ =

Dφµ

ds
.

The purely-functional variation along the curve will vanish if ∇λφ
µ = 0. This

is what is meant when we say that φµ is parallel-transported along a curve γ:

the field is transported in such a way that it suffers no change in its functional

form. The change coming from the argument,

dφµ

ds
=

dxλ

ds
∂λφ

µ = Uλ ∂λφ
µ ,

is exactly compensated by the term UλΓµ
νλ φν .

When φµ = Uµ itself, we have the acceleration DUµ/ds. The condition

of no variation of the velocity-field along the curve will lead to the geodesic

equation

DUµ

ds
= Uλ [∂λU

µ + Γµ
νλ U ν ] =

dUµ

ds
+ Γµ

νλ U ν Uλ = 0 ,

which is an equation for γ.

5.2.4 Back to Equivalence

§ 5.20 We have seen in Section 3.7 how a convenient choice of coordinates

leads to the vanishing of the Levi-Civita connection at a point. Nevertheless,

we had in § 3.11 introduced an observer as a timelike curve, and qualified

that notion in the ensuing paragraphs. A timelike curve is, actually, an

ideal observer, which is point-like in any local space section. Real observers

are extended in space and can always detect gravitation by comparing the

neighboring curves followed by hers/his parts (§ 3.46). Ideal observers can

be arbitrary curves (subsection 3.8.2) and, eventually, can have well-defined

space-sections all along (subsection 3.8.4).

We shall now see how a tetrad {Ha} can be chosen so that, seen from the

frame it represents, the connection can be made to vanish all along a curve.
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Looking from that frame, an ideal observer will not feel the gravitational

field.

§ 5.21 Take a differentiable curve γ which is an integral curve of a field U ,

with Uµ = dxµ

ds
= dγµ(s)

ds
. The condition for the connection to vanish along γ,

Γa
bν(γ(s)) = 0, will be

U ν∂ν Ha
λ(γ(s)) + Γλ

µν(γ(s)) U ν Ha
µ(γ(s)) = 0,

that is,

d

ds
Ha

λ(γ(s)) + Γλ
µν(γ(s)) U ν Ha

µ(γ(s)) = 0. (5.34)

This is simply the requirement that the tetrad (each member Ha of it) be

parallel-transported along γ. Given a curve and a linear connecion, any

vector field can be parallel-transported along γ. The procedure is then very

simple: take, in the way previously discussed, a point P on the curve and

find the corresponding trivial tetrad {Ha(P )}; then, parallel-transport it

along the curve.

For the dual base {Ha}, the above formula reads

d

ds
Ha

µ(γ(s)) − Γρ
µν(γ(s)) Uν Ha

ρ(γ(s)) = 0. (5.35)

§ 5.22 Take (5.34) in the form

Hb
µ(x)

d

ds
Hb

λ(x) = − Γλ
µν(x)U ν

and contract it with Uµ:

UµHb
µ(x)

d

ds
Hb

λ(x) = − Γλ
µν(x)UµU ν . (5.36)

Seen from the tetrad, the tangent field will be U b = Hb
µU

µ, and the above

formula is

U b d

ds
Hb

λ(x) + Γλ
µν(x)UµU ν = 0, (5.37)

or

Hb
λ(x)

d

ds
U b =

d

ds
Uλ(x) + Γλ

µν(x)UµU ν =
D

Ds
Uλ(x). (5.38)
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This shows that, if γ is a self-parallel curve, then

d

ds
Ua = 0. (5.39)

This is the equation for a geodesic, as seen from the frame {Ha = Ha
λ ∂

∂xλ}.
If an external force is present, then m D

Ds
Uλ(x) = F λ and

m
d

ds
Ua = F a. (5.40)

This means that, looking from that tetrad, the observer will see the laws of

Physics as given by Special Relativity.

§ 5.23 Consider now a Levi-Civita geodesic. In that case there exists a

preferred tetrad ha, which is not parallel-transported along the curve. Its

deviation from parallelism is measured by the spin connection. Indeed, from

(5.32),

d

ds
hb

λ + Γλ
µν U ν hb

µ = ha
λ Γa

bν U ν . (5.41)

This is the same as

d

ds
hb

λ = hb
σ Γσ

λν U ν − hd
λΓ

b
dc

◦
U

c . (5.42)

We call
◦
U the velocity as seen from the frame {ha}. Equation (5.32) is

actually a representation of the Equivalence Principle. Let us write it into

still another form,

D

Ds
hb =

d

ds
hb + Γ

(
d

ds

)
hb = Γa

b

(
d

ds

)
ha . (5.43)

This holds for any curve with tangent vector ( d
ds

). It means that the frame

{ha} can be parallel-transported along no curve. The spin connection forbids

it, and gives the rate of change with respect to parallel transport.

§ 5.24 One of the versions of the Principle — the etymological one — says

that a gravitational field is equivalent to an accellerated frame. Which frame

? We see now the answer: the frame equivalent to the field represented by

the metric gµν = ηabh
a
µh

b
ν is just the anholonomous frame {ha}. Another
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piece of the Principle says that it is possible to choose a frame in which the

connection vanishes. Let us see now how to change from the “equivalent”

frame {ha} to the free-falling frame {Ha}. Contracting (5.41) with Ha
λ,

Ha
λ

d

ds
hb

λ + Γλ
µν U ν Ha

λhb
µ = Ha

λhc
λ Γc

bν U ν ,

which is the same as

d

ds

(
Ha

λhb
λ
)
− hb

µ

(
d

ds
Ha

µ − Γλ
µν U ν Ha

λ

)
= Ha

λhc
λ Γc

bν U ν .

The second term in the left-hand side vanishes by Eq.(5.35), so that we

remain with

d

ds

(
Ha

λhb
λ
)
− Ha

λhc
λ Γc

bν U ν = 0 . (5.44)

What appears here is a point-dependent Lorentz transformation relating the

metric tetrad ha to the frame Ha in which Γ vanishes:

Ha
λ = Λa

b hb
λ , Ha = Λa

b hb . (5.45)

This means

Λa
b = Ha

λ hb
λ . (5.46)

This relation holds on the common domain of definition of both tetrad fields.

Taking this into (5.44), we arrive at a relationship which holds on the inter-

section of that domain with a geodesics of the Levi-Civita connection
◦
Γ:

d

ds
Λa

b − Λa
c

◦
Γ

c
bd

◦
U

d = 0 . (5.47)

This equation gives the change, along the metric geodesic, of the Lorentz

transformation taking the metric tetrad ha into the frame Ha. The vector

formed by each row of the Lorentz matrix is parallel-transported along the

line. Contracting with the inverse Lorentz transformation

(Λ−1)a
b = ha

ρHb
ρ , (5.48)

the expression above gives

◦
Γ

a
bd

◦
U

d = (Λ−1)a
c

d

ds
Λc

b = (Λ−1 d

ds
Λ)a

b . (5.49)
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This is, in the language of differential forms,

◦
Γ

a
bd hd

(
d

ds

)
= (Λ−1dΛ)a

b

(
d

ds

)
. (5.50)

Thus on the points of the curve, the connection has the form of a gauge

Lorentz vacuum:

◦
Γ

a
b = (Λ−1dΛ)a

b (5.51)

It is important to stress that this is only true along a curve — a one-
dimensional domain — so that curvature is not affected. Curvature, the real
gravitational field, only manisfests itself on two-dimensional domains. Seen
from the frame ha, the geodesic equation has the form

d

ds

◦
U

a +
◦
Γ

a
bc

◦
U

b
◦
U

c = 0, (5.52)

which is the same as

d

ds

◦
U

a + (Λ−1 d

ds
Λ)a

b

◦
U

b = 0.

This expression, once multiplied on the left by Λ, gives

Λc
a

d

ds

◦
U

a +
d

ds
(Λc

a)
◦
U

a =
d

ds
(Λc

a

◦
U

a) = 0. (5.53)

This is Eq. (5.39) for the present case. Summing up: at each point of the
curve/observer there is a Lorentz transformation taking the accelerated frame
{ha}, equivalent to the gravitational field, into the inertial frame {Ha}, in
which the force equation acquires the form it would have in Special Relativity.

These considerations can be enlarged to general Lorentz tensors. Take,
for instance, a second order tensor:

T ab = Λa
c Λb

d

◦
T

cd.

Taking d
ds

of this expression leads to

d

ds

◦
T

ab +
◦
Γ

a
c

◦
T

cb +
◦
Γ

b
c

◦
T

ac = (Λ−1)a
c (Λ−1)b

d
d

ds
T cd .

The covariant derivative according to the connection
◦
Γ, which is Γ seen from

the frame ha, is the Lorentz transform of the simple derivative as seen from
the inertial frame Ha, in which Γ vanishes.
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Summing up again: at each point of the curve/observer there is a Lorentz
transformation taking the accelerated frame {ha}, equivalent to the gravita-
tional field, into the free falling frame {Ha}, in which all tensorial (that is,
covariant) equations acquire the form they would have in Special Relativity.
This is the content of the Equivalence Principle.

§ 5.25 In the gauge theories describing the other fundamental interactions,

an analogous property turns up: at each point of the curve/observer a gauge

can be found in which the potential vanishes. However, it is not the potential

but the field strength which appears in the force equation — the Lorentz

force equation (1.18) is typical. The field strength is the curvature in these

theories, and cannot be made to vanish. This is a crucial difference between

gravitation and the other interactions.∗

5.2.5 Two Gates into Gravitation

§ 5.26 Starting with a given nontrivial tetrad field {ha}, two different but

equivalent ways of describing gravitation are possible. In the first, according

to (5.10), the nontrivial tetrad field is used to define a Riemannian metric gµν ,

from which we can contruct the Levi–Civita connection and the correspond-

ing curvature tensor. As the starting point was a nontrivial tetrad field, we

can say that such a tetrad is able to induce a metric structure in spacetime,

which is the structure underlying the General Relativity description of the

gravitational field. We have seen that {ha} is not parallel-transported by the

Levi-Civita connection.

On the other hand, a nontrivial tetrad field can be used to define a very

special linear connection, called Weitzenböck connection, with respect to

which the tetrad {ha} is parallel. For this reason, this kind of structure has

received the name of teleparallelism, or absolute parallelism, and is the stage-

set of the so called teleparallel description of gravitation. The important

point to be kept from these considerations is that a nontrivial tetrad field is

able to induce in spacetime both a teleparallel and a Riemannian structure.

In what follows we will explore these structures in more detail.

∗ Details can be found in R. Aldrovandi, P. B. Barros e J. G. Pereira, The equivalence
principle revisited, Foundations of Physics 33 (2003) 545-575 - ArXiv: gr-qc/0212034.
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§ 5.27 Let us consider now the covariant derivative of the metric tensor gµν .

It is

∇ρgµν = ∂ρgµν − Γλ
µρgλν − Γλ

νρg
µλ ,

or, by using (5.24)

∇ρgµν = ha
µ hb

ν (Γabρ + Γbaρ) . (5.54)

Therefore, the metricity condition

∇ρgµν = 0 (5.55)

will only hold when the connection is either purely antisymmetric [(pseudo)

orthogonal],

Γabρ = − Γbaρ ,

or when it vanishes identically:

Γabρ = 0 .

The Levi–Civita connection falls into the first case and, as we are going

to see, the Weitzenböck connection into the second case. This means that

both connections preserve the metric.
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Chapter 6

Gravitational Interaction of the

Fundamental Fields

6.1 Minimal Coupling Prescription

The interaction of a general field Ψ with gravitation can be obtained through
the application of the so called minimal coupling prescription, according to
which the Minkowski metric must be replaced by the riemannian metric

ηab → gµν = ηab ha
µ hb

ν , (6.1)

and all ordinary derivatives must be replaced by Fock-Ivanenko covariant
derivatives [1],

∂µΨ → DµΨ = ∂µΨ − i

2
ωab

µ Sab Ψ (6.2)

where ωab
µ is a connection assuming values in the Lie algebra of the Lorentz

group, usually called spin connection, and Sab is a Lorentz generator writ-
ten in a representation appropriate to the field Ψ. This “double” coupling
prescription is a characteristic property of the gravitational interaction as
for all other interactions of Nature only the derivative replacement (6.2) is
necessary.

Let us explore deeper this point. The metric replacement (6.1) is a con-
sequence of the local invariance of the lagrangian under translations of the
tangent–space coordinates [2]. This part of the prescription, therefore, is
related to the coupling of the field energy–momentum to gravitation, and is
universal in the sense that it is the same for all fields. On the other hand,
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the derivative replacement (6.2) is a consequence of the invariance of the
lagrangian under local Lorentz transformations of the tangent–space coordi-
nates. This part of the prescription, therefore, is related to the coupling of
the field spin to gravitation, and is not universal because it depends on the
spin contents of the field.

Another important point of the above coupling prescription is that the
metric change (6.1) is appropriate only for integer–spin fields, whose la-
grangian is quadratic in the field derivative, and consequently a metric tensor
is always present to contract these two derivatives. For half-integer spin fields,
however, the lagrangian is linear in the field derivative, and consequently no
metric will be present to be changed. In this case, the metric change must
be replaced by the equivalent rule in terms of the tetrad field,

ea
µ −→ ha

µ , (6.3)

where ea
µ is the trivial tetrad

ea
µ =

∂xa

∂xµ
, (6.4)

and ha
µ is a nontrivial tetrad representing a true gravitational field.

Besides being more fundamental than the metric change (6.1), the tetrad
change (6.3) allows the introduction of a full coupling prescription which en-
compasses both the metric — or equivalently the tetrad — and the derivative
changes. It is given by

∂a → Da ≡ ha
µ Dµ = ha

µ

(
∂µ − i

2
ωab

µ Sab

)
, (6.5)

This coupling prescription is general in the sense that it holds for both integer
and half–integer spin fields. For the case of integer spin fields, it yields
automatically the metric replacement (6.1). For the case of half–integer spin
fields, it yields automatically the tetrad replacement (6.3).

6.2 General Relativity Spin Connection

As is well known, a tetrad field can be used to transform Lorentz into space-
time indices, and vice–versa. For example, a Lorentz vector field V a is related
to the corresponding spacetime vector V µ through

V a = ha
µV

µ . (6.6)
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It is important to notice that this applies to tensors only. Connections, for
example, acquire an extra vacuum term under such change [3]:

ωa
bν = ha

ρω
ρ
µν hb

µ + ha
ρ∂νhb

ρ . (6.7)

On the other hand, because they are used in the construction of covariant
derivatives, connections (or potentials, in physical parlance) are the most
important personages in the description of an interaction. Concerning the
specific case of the general relativity description of gravitation, the spin con-

nection, denoted here by ωa
bν =

◦
Aa

bν , is given by [4]

◦
A

a
bν = ha

ρ

◦
Γ

ρ
µν hb

µ + ha
ρ∂νhb

ρ ≡ ha
ρ

◦
∇ν hb

ρ . (6.8)

We see in this way that the spin connection
◦
Aa

bν is nothing but the Levi–
Civita connection

◦
Γ

ρ
µν = 1

2
gρλ [∂µgλν + ∂νgλµ − ∂λgµν ] (6.9)

rewritten in the tetrad basis. Therefore, the full coupling prescription of
general relativity is

∂a →
◦
Da ≡ ha

µ
◦
Dµ (6.10)

with

◦
Dµ = ∂µ − i

2

◦
A

ab
µ Sab (6.11)

the general relativity Fock–Ivanenko [1] covariant derivative operator.
Now, comes an important point. The covariant derivative (6.11) applied

to a general Lorentz tensor field reduces to the usual Levi-Civita covariant
derivative of the corresponding spacetime tensor. For example, take again a
vector field V a for which the appropriate Lorentz generator is [5]

(Sab)
c
d = i (δc

a ηbd − δc
b ηad) . (6.12)

It is then an easy task to verify that [6]

◦
DµV

a = ha
ρ

◦
∇µV

ρ . (6.13)

On the other hand, no Levi–Civita covariant derivative can be defined for
half-integer spin fields [7]. For these fields, the only possible form of the
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covariant derivative is that given in terms of the spin connection. For a
Dirac spinor ψ, for example, the covariant derivative is

◦
Dµψ = ∂µψ − i

2

◦
A

ab
µ Sabψ , (6.14)

where

Sab =
1

2
σab =

i

4
[γa, γb] (6.15)

is the Lorentz spin-1/2 generator, with γa the Dirac matrices. Therefore, we
may say that the covariant derivative (6.11), which take into account the spin
contents of the fields as defined in the tangent space, is more fundamental
than the Levi–Civita covariant derivative in the sense that it is able to de-
scribe the gravitational coupling of both tensor and spinor fields. For tensor
fields it reduces to the Levi–Civita covariant derivative, but for spinor fields
it remains as a Fock–Ivanenko derivative.

6.3 Application to the Fundamental Fields

6.3.1 Scalar Field

Let us consider first a scalar field φ in a Minkowski spacetime, whose la-
grangian is

Lφ =
1

2

[
ηab ∂aφ ∂bφ − µ2φ2

]
, (6.16)

with

µ =
mc

�
. (6.17)

The corresponding field equation is the so called Klein–Gordon equation:

∂a∂
aφ + µ2φ = 0 . (6.18)

In order to get the coupling of the scalar field with gravitation, we use
the full coupling prescription

∂a →
◦
Da ≡ ha

µ
◦
Dµ = ha

µ

(
∂µ − i

2

◦
A

ab
µ Sab

)
. (6.19)
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For a scalar field, however,

Sab φ = 0 , (6.20)

and the coupling prescription in this case becomes

∂a −→ ha
µ∂µ . (6.21)

Applying this prescription to the lagrangian (6.16), we get

Lφ =

√−g

2

[
gµν ∂µφ ∂νφ − µ2φ2

]
. (6.22)

Then, by using the identity

∂µ

√−g =

√−g

2
gρλ ∂µgρλ ≡ √−g

◦
Γ

ρ
µρ , (6.23)

it is easy to see that the corresponding field equation is

◦
φ + µ2φ = 0 , (6.24)

where

◦
=

◦
∇µ ∂µ ≡ 1√−g

∂µ

(√−g gρµ ∂ρ

)
(6.25)

is the Laplace–Beltrami operator, with
◦
∇µ the Levi–Civita covariant deriva-

tive. We notice in passing that it is completely equivalent to apply the
minimal coupling prescription to the lagrangian or to the field equations.
Furthermore, we notice that, in a locally inertial coordinate system, the first
derivative of the metric tensor vanishes, the Levi–Civita connection vanishes
as well, and the Laplace–Beltrami becomes the free–field d’Alambertian op-
erator. This is the usual version of the (weak) equivalence principle.

6.3.2 Dirac Spinor Field

In Minkowski spacetime, the spinor field lagrangian is

Lψ =
ic�

2

(
ψ̄ γa∂aψ − ∂aψ̄γa ψ

)
− mc2 ψ̄ψ . (6.26)

The corresponding field equation is the Dirac equation

i�γa ∂aψ − mc ψ = 0 . (6.27)
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In the context of general relativity, the coupling of a Dirac spinor with
gravitation is obtained through the application of the full coupling prescrip-
tion

∂a →
◦
Da ≡ ha

µ
◦
Dµ = ha

µ

(
∂µ − i

2

◦
A

ab
µ Sab

)
, (6.28)

where now Sab stands for the spin-1/2 generators of the Lorentz group, given
by

Sab =
σab

2
=

i

4
[γa, γb] . (6.29)

The spin connection, according to Eq.(6.8), is written in terms of the tetrad
field as

◦
A

a
bν = ha

ρ

◦
Γ

ρ
µν hb

µ + ha
ρ∂νhb

ρ . (6.30)

Applying the above coupling prescription to the free lagrangian (6.26), we
get

Lψ =
√−g c

[
ic�

2

(
ψ̄γµ

◦
Dµψ −

◦
Dµψ̄γµψ

)
− m c2 ψ̄ψ

]
, (6.31)

where γµ = ea
µγa is the local Dirac matrix, which satisfy

{γµ, γν} = 2ηabha
µhb

ν = 2gµν . (6.32)

The corresponding Dirac equation can be obtained through the use of the
Euler-Lagrange equation

∂Lψ

∂ψ̄
−

◦
Dµ

∂Lψ

∂(
◦
Dµψ̄)

= 0 . (6.33)

The result is the Dirac equation in a Riemann spacetime

i�γµ
◦
Dµψ − mcψ = 0 . (6.34)

6.3.3 Electromagnetic Field

In Minkowski spacetime, the electromagnetic field is described by the la-
grangian density

Lem = −1

4
FabF

ab , (6.35)
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where

Fab = ∂aAb − ∂bAa (6.36)

is the Maxwell field strength. The corresponding field equation is

∂aF
ab = 0 , (6.37)

which along with the Bianchi identity

∂aFbc + ∂cFab + ∂bFca = 0 , (6.38)

constitute Maxwell’s equations. In the Lorentz gauge ∂aA
a = 0, the field

equation (6.37) acquires the form

∂c∂
cAa = 0 . (6.39)

In the framework of general relativity, the form of Maxwell’s equations can
be obtained through the application of the full minimal coupling prescription
(6.5), which amounts to replace

∂a → ha
µ

◦
Dµ = ha

µ

(
∂µ − i

2

◦
A

ab
µSab

)
, (6.40)

with

(Sab)
c

d = i (δa
cηbd − δb

cηad) (6.41)

the vector representation of the Lorentz generators. For the specific case of
the electromagnetic vector field Aa, the Fock-Ivanenko derivative acquires
the form

◦
DµA

a = ∂µA
a +

◦
A

a
bµ Ab . (6.42)

It is important to remark once more that the Fock–Ivanenko derivative
is concerned only to the local Lorentz indices. In other words, it ignores the
spacetime tensor character of the fields. For example, the Fock–Ivanenko
derivative of the tetrad field is

◦
Dµh

a
ν = ∂µh

a
ν +

◦
A

a
bµ hb

ν . (6.43)

Substituting

◦
A

a
bµ = ha

ρ

◦
∇µhb

ρ , (6.44)
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we get

◦
Dµh

a
ν =

◦
Γ

ρ
νµ ha

ρ . (6.45)

As a consequence, the total covariant derivative of the tetrad ha
ν , that is, a

covariant derivative which takes into account both indices of ha
ν , vanishes

identically:

∂µh
a
ν +

◦
A

a
bµ hb

ν −
◦
Γ

ρ
νµ ha

ρ = 0 . (6.46)

Now, any Lorentz vector field Aa can be transformed into a spacetime
vector field Aµ through

Aµ = ha
µ Aa , (6.47)

where Aµ transforms as a vector under a general spacetime coordinate trans-
formation. Substituting into equation (6.42), and making use of (6.45), we
get

◦
DµA

a = ha
ρ

◦
∇µA

ρ . (6.48)

We see in this way that the Fock–Ivanenko derivative of a Lorentz vector field
Ac reduces to the usual Levi–Civita covariant derivative of general relativity.
This means that, for a vector field, the minimal coupling prescription (6.40)
can be restated as

∂aA
c → ha

µ hc
ρ

◦
∇µA

ρ . (6.49)

Therefore, in the presence of gravitation, the electromagnetic field lagrangian
acquires the form

Lem = −1

4

√−g FµνF
µν , (6.50)

where

Fµν =
◦
∇µAν −

◦
∇νAµ ≡ ∂µAν − ∂νAµ , (6.51)

the connection terms canceling due to the symmetry of the Levi–Civita con-
nection in the last two indices. The corresponding field equation is

◦
∇µF

µν = 0 , (6.52)
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or equivalently, assuming the covariant Lorentz gauge
◦
∇µA

µ = 0,

◦
∇µ

◦
∇µAν −

◦
R

µ
νAµ = 0 . (6.53)

Analogously, the Bianchi identity (6.38) can be shown to assume the form

∂µFνσ + ∂σFµν + ∂νFσµ = 0 . (6.54)

We notice in passing that the presence of gravitation does not spoil the U(1)
gauge invariance of Maxwell theory. Furthermore, like in the case of the
scalar field, it results the same to apply the coupling prescription in the
lagrangian or in the field equations.

169



Chapter 7

General Relativity with Matter

Fields

7.1 Global Noether Theorem

Let us start by briefly reviewing the results of the global — or first —
Noether’s theorem [8]. As is well known, the global Noether theorem is
concerned with the invariance of the action functional under global trans-
formations. For each of such invariances, Noether’s theorem determines a
conservation law. In the specific case of the invariance under a global trans-
lation of the spacetime coordinates, the corresponding Noether conserved
current is the canonical energy–momentum tensor

θa
b =

∂LΨ

∂∂aΨ
∂bΨ − δa

b LΨ , (7.1)

with LΨ the lagrangian of the field Ψ.
On the other hand, in the case of the invariance under a global rota-

tion of the spacetime coordinates — that is, under a Lorentz transformation
— the corresponding Noether conserved current is the canonical angular–
momentum tensor

J a
bc = Ma

bc + Sa
bc , (7.2)

where

Ma
bc = xb θa

c − xc θa
b , (7.3)
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is the orbital angular–momentum, and

Sa
bc = i

∂LΨ

∂∂aΨ
SbcΨ (7.4)

is the spin angular–momentum, with Sbc the generators of Lorentz transfor-
mations written in the representation appropriate for the field Ψ. Notice that
Ma

bc is the same for all fields, whereas Sa
bc depends on the spin contents of

the field Ψ.
Notice that the canonical energy–momentum tensor θa

b is not symmetric
in general. However, using the Belinfante procedure [9] it is possible to define
a symmetric energy–momentum tensor for the spinor field,

Θab = θab − 1

2
∂cϕ

cab, (7.5)

where

ϕcab = −ϕacb = Scab + Sabc − Sbca . (7.6)

It can be easily verified that

∂cϕ
cab = θab − θba , (7.7)

which together with (7.5) show that Θab is in fact symmetric.

7.2 Energy–Momentum as Source of Curva-

ture

An old and controversial problem of gravitation is the conservation of energy–
momentum density for both gravitational and matter fields. Concerning the
energy–momentum tensor of matter fields, it becomes problematic mainly
when spinor fields are present [10]. In order to explore deeper these prob-
lems, we are going to study the definition as well as the conservation law
of the gravitational energy–momentum density of a general matter field. By
gravitational energy–momentum tensor we mean the source of gravitation,
that is, the tensor appearing in the right hand–side of the gravitational field
equations. For the specific case of a spinor field, this energy–momentum
tensor is sometimes believed to acquire a genuine non–symmetric part. As
the left hand–side of the gravitational field equations are always symmet-
ric, this would call for a generalization of general relativity. However, the
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gravitational energy–momentum tensor is actually always symmetric, even
for a spinor field, which shows the consistency and completeness of general
relativity.

Let us consider the lagrangian

L = LG + LΨ , (7.8)

where

LG = − c4

16πG

√−g
◦
R (7.9)

is the Einstein–Hilbert lagrangian of general relativity, and LΨ is the la-
grangian of a general matter field Ψ. The functional variation of L in relation
to the metric tensor gµν yields the field equation

◦
Rµν −

1

2
gµν

◦
R=

4πG

c4
Tµν , (7.10)

where

Tµν = − 2√−g

δLΨ

δgµν
(7.11)

is the gravitational energy–momentum tensor of the field Ψ. The contravari-
ant components of the gravitational energy–momentum tensor is

T µν =
2√−g

δLΨ

δgµν

. (7.12)

In these expressions,

δLΨ

δgµν
=

∂LΨ

∂gµν
− ∂ρ

∂LΨ

∂ρ∂gµν
(7.13)

is the Lagrange functional derivative. In general relativity, therefore, energy
and momentum are the source of gravitation, or equivalently, are the source
of curvature. As the metric tensor is symmetric, the gravitational energy–
momentum tensor obtained from either expression (7.11) or (7.12) is always
symmetric. These expressions yield the energy–momentum tensor not only
in the case of the presence of a gravitational field, but also in the absence.
In the absence of a gravitational field, a transition to curvilinear coordinates
must be done before the calculation of T µν . Of course, the metric tensor
in this case will not represent a true gravitational field, but only effects of
coordinates.
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7.3 Energy–Momentum Conservation

Let us obtain now the conservation law of the gravitational energy–momen-
tum tensor of a general source field Ψ. Denoting by LΨ the lagrangian of the
field Ψ, the corresponding action integral is written in the form

S =
1

c

∫
LΨ d4x . (7.14)

As a spacetime scalar, it does not change under a general transformation of
coordinates. Of course, under a coordinate transformation, the field Ψ will
change by an amount δΨ. Due to the equation of motion satisfied by this
field, the coefficient of δΨ vanishes, and for this reason we are not going to
take these variations into account. For our purposes, it will be enough to
consider only the variations in the metric tensor gµν . Accordingly, by using
Gauss theorem, and by considering that δgµν = 0 at the integration limits,
the variation of the action integral (7.14) can be written in the form [11]

δS =
1

c

∫
δLΨ

δgµν
δgµν d4x = −1

c

∫
δLΨ

δgµν

δgµν d4x , (7.15)

with δLΨ/δgµν the Lagrange functional derivative (7.13). But, we have al-
ready seen in section 7.2 that

δLΨ

δgµν
=

√−g

2
Tµν , (7.16)

where Tµν is the gravitational energy–momentum tensor of the field Ψ. There-
fore, we have

δS =
1

2c

∫
Tµν δgµν

√−g d4x = − 1

2c

∫
T µν δgµν

√−g d4x . (7.17)

On the other hand, under a spacetime general coordinate transformation

xµ → x′µ = xµ + εµ , (7.18)

with εµ small quantities, the components of the metric tensor change accord-
ing to

δgµν ≡ g′
µν(x

ρ) − gµν(x
ρ) = −gµλ∂νε

λ − gλν∂µε
λ − ∂λgµνε

λ , (7.19)

where only terms linear in the transformation parameter εµ have been kept.
Substituting into (7.17), we get

δS = − 1

2c

∫
T µν

[
−gµλ∂νε

λ − gλν∂µε
λ − ∂λgµνε

λ
] √−g d4x . (7.20)
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Integrating by parts the second and third terms, neglecting integrals over
hypersurfaces, and making use of the symmetry of T µν , we get

δS = −1

c

∫ [
∂ν(

√−gT ν
λ) −

1

2
∂λgµν

√−g T µν

]
ελ d4x , (7.21)

or equivalently

δS = −1

c

∫ [
∂ν(

√−gT ν
λ) −

◦
Γ

ρ
λν T ν

ρ

√−g
]

ελ d4x . (7.22)

Then, by using the identity

∂ν

√−g =
√−g

◦
Γ

µ
µν , (7.23)

we get

δS = −1

c

∫
◦
∇νT ν

λ ελ
√−g d4x . (7.24)

Therefore, from both the invariance condition δS = 0 and the arbitrariness
of ερ, it follows that

◦
∇νT ν

λ = 0 . (7.25)

It is important to remark that this is not a true conservation law in the
sense that it does not lead to a charge conserved in time. Instead, it is
an identity satisfied by the gravitational energy–momentum tensor, usually
called Noether identity [8]. The sum of the energy–momentum of the gravi-
tational field tµρ and the energy–momentum of the matter field T µ

ρ is a truly
conserved quantity. In fact, this quatity satisfies

∂µ

[√−g (tµρ + T µ
ρ)

]
= 0 , (7.26)

which, by using Gauss theorem, yields the true conservation law

dqρ

dt
= 0 , (7.27)

with

qρ =

∫ (
t0ρ + T 0

ρ

) √−g d3x (7.28)

the conserved charge.
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7.4 Examples

7.4.1 Scalar Field

Let us take the lagrangian of a scalar field in a Minkowski spacetime,

Lφ =
1

2

[
ηab ∂aφ ∂bφ − µ2φ2

]
, (7.29)

with µ given by (6.17). From Noether’s theorem we find that the correspond-
ing canonical energy–momentum and spin tensors are given respectively by

θa
b = ∂aφ ∂bφ − δa

b Lφ , (7.30)

and

Sa
bc = 0 . (7.31)

As a consequence of the vanishing of the spin tensor, the canonical energy–
momentum tensor of the scalar field is symmetric, and is conserved in the
ordinary sense:

∂aθ
a
b = 0 . (7.32)

In the presence of gravitation, the scalar field lagrangian is given by

Lφ =

√−g

2

[
gµν ∂µφ ∂νφ − µ2φ2

]
. (7.33)

By using the identity

δ
√−g =

√−g

2
gµν δgµν ,

the dynamical energy–momentum tensor is found to be

√−g Tµν =
√−g ∂µφ ∂νφ − gµν Lφ . (7.34)

Like in the free case, it is symmetric, and conserved in the covariant sense:

◦
∇µT µ

ν = 0 . (7.35)
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7.4.2 Dirac Spinor Field

The Dirac spinor lagrangian in Minkowski spacetime is

Lψ =
ic�

2

(
ψ̄γa∂aψ − ∂aψ̄γaψ

)
− mc2ψ̄ψ . (7.36)

From the first Noether’s theorem one finds that the corresponding canonical
energy–momentum and spin tensors are given respectively by

θa
b =

ic�

2

(
ψ̄γa∂bψ − ∂bψ̄γaψ

)
, (7.37)

and

Sa
bc = −c�

2

(
ψ̄γaSbcψ + ψ̄Sbcγ

aψ
)
, (7.38)

with

Sbc =
σbc

2
=

i

4
[γb, γc] . (7.39)

It should be noticed that, in contrast to the scalar field case, the canonical
energy–momentum tensor for the Dirac spinor is not symmetric. As already
discussed, however, we can use the Belinfante procedure [9] to construct a
symmetric energy–momentum tensor for the spinor field, which is given by

Θab = θab − 1

2
∂cϕ

cab, (7.40)

with

ϕcab = −ϕacb = Scab + Sabc − Sbca . (7.41)

In the presence of gravitation, the spinor field lagrangian is

Lψ =
√−g c

[
i�

2

(
ψ̄γµ

◦
Dµψ −

◦
D ∗

µψ̄γµψ
)
− m c ψ̄ψ

]
. (7.42)

The dynamical energy–momentum tensor of the spinor field, according to the
definition (7.11), is found to be

Tρµ = θ̃ρµ − 1

2

◦
Dλϕλρµ , (7.43)

where

θ̃ρµ =
ic�

2

(
ψ̄γρDµψ −D∗

µψ̄γρψ
)

(7.44)
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is the canonical energy–momentum tensor modified by the presence of grav-
itation, and ϕλρµ is still given by (7.6), but now written in terms of the spin
tensor modified by the presence of gravitation:

Sµ
bc =

c�

4

(
ψ̄γaha

µσbcψ + ψ̄σbcγ
aha

µψ
)

. (7.45)

Equation (7.43) is a generalization of the Belinfante procedure for the
presence of gravitation. In fact, through a tedious but straightforward cal-
culation we can show that

Dµφ
µρλ = gµλθ̃ρ

µ − gµρθ̃λ
µ , (7.46)

from which we see that the dynamical energy–momentum tensor T ρλ of the
Dirac field, that is, the Euler–Lagrange functional derivative of the spinor
lagrangian (7.42) with respect to the metric, is always symmetric.

7.4.3 Electromagnetic Field

In Minkowski spacetime, the electromagnetic field is described by the la-
grangian density

Lem = −1

4
FabF

ab . (7.47)

The corresponding canonical energy–momentum and spin tensors are given
respectively by

θa
b = −4∂bAcF

ac + δa
bFcdF

cd , (7.48)

and

Sa
bc = F a

bAc − F a
cAb . (7.49)

As in the spinor case, the canonical energy–momentum tensor θa
b of the

electromagnetic field is not symmetric. By using the Belinfante procedure,
however, it is possible to define the symmetric energy–momentum tensor,

Θab = θab − 1

2
∂cϕ

cab , (7.50)

where

ϕcab = −ϕacb = Scab + Sabc − Sbca . (7.51)
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As can be easily verified,

ϕcab = 2F caAb . (7.52)

Consequently,

Θab = 4

[
−F ac F b

c +
1

4
ηab FcdF

cd

]
(7.53)

is in fact symmetric, and conserved in the ordinary sense:

∂aθ
a
b = 0 . (7.54)

In the presence of gravitation, the electromagnetic field lagrangian is

Lem = −1

4

√−g FµνF
µν , (7.55)

and the dynamical energy–momentum tensor

Tµν = − 2√−g

δLem

δgµν
(7.56)

is found to be

Tµν =

[
Fµ

ρ Fνρ −
1

4
gµν FρσF

ρσ

]
. (7.57)

It is symmetric and covariantly conserved:

◦
∇µ T µν = 0 . (7.58)
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Chapter 8

Closing Remarks

Gravitation differs from the other three known fundamental interactions of
Nature by its more intimate relationship to spacetime. The other inter-
actions (electromagnetic, weak and strong) are also described by (gauge)
theories with a large geometrical content. However, while gravitation deals
with changes of frames, the other interactions are concerned with changes of
gauges in “internal” spaces. Gravitation relates to energy, while the other
interactions cope with conserved quantities (“charges”) which are indepen-
dent of the events on spacetime — electric charge, weak isotopic spin and
hypercharge, color.

In consequence, gravitation engender forces of inertial type, quite distinct
from charge-produced forces. Hence its unique, universal character. Its pres-
ence is felt by all particles and fields in the same way — as if changing the
very scene in which phenomena take place.

We hope to have given in these notes a first glimpse into the way these
strange things happen.
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